The effect of dietary properties on craniofacial form has been the focus of numerous functional studies, with increasingly more work dedicated to the importance of phenotypic plasticity. As bone is a dynamic tissue, morphological variation related to differential loading is well established for many masticatory structures. However, the adaptive osteogenic response of several cranial sites across multiple levels of bony organization remains to be investigated.
View Article and Find Full Text PDFThe zygomatic arch is morphologically complex, providing a key interface between the viscerocranium and neurocranium. It also serves as an attachment site for masticatory muscles, thereby linking it to the feeding apparatus. Though morphological variation related to differential loading is well known for many craniomandibular elements, the adaptive osteogenic response of the zygomatic arch remains to be investigated.
View Article and Find Full Text PDFUsing a model organism (rabbits) that resembles a number of mammalian herbivores in key aspects of its chewing behaviors, we examined how variation in dietary mechanical properties affects food breakdown during mastication. Such data have implications for understanding phenotypic variation in the mammalian feeding apparatus, particularly with respect to linking jaw form to diet-induced repetitive loading. Results indicate that chewing frequency (chews/s) is independent of food properties, whereas chewing investment (chews/g) and chewing duration(s), which are proportional to repetitive loading of the jaws, are positively related to food stiffness and toughness.
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
November 2016
Experimental analyses directly inform how an anatomical feature or complex functions during an organism's lifetime, which serves to increase the efficacy of comparative studies of living and fossil taxa. In the mammalian skull, food material properties and feeding behaviour have a pronounced influence on the development of the masticatory apparatus. Diet-related variation in loading magnitude and frequency induce a cascade of changes at the gross, tissue, cellular, protein and genetic levels, with such modelling and remodelling maintaining the integrity of oral structures vis-à-vis routine masticatory stresses.
View Article and Find Full Text PDFMany organisms exhibit a decrease in the ability to modify their phenotypes in response to shifts in environmental conditions as they mature. Such age-dependent plasticity has important implications in a variety of evolutionary and ecological contexts, particularly with respect to understanding adaptive responses to heterogeneous environments. In this study, we used experimental diet manipulation to examine the life-history trajectory of plasticity in the feeding complex of a model organism, the white rabbit (Oryctolagus cuniculus).
View Article and Find Full Text PDFThe robust jaws and large, thick-enameled molars of the Plio-Pleistocene hominins Australopithecus and Paranthropus have long been interpreted as adaptations for hard-object feeding. Recent studies of dental microwear indicate that only Paranthropus robustus regularly ate hard items, suggesting that the dentognathic anatomy of other australopiths reflects rare, seasonal exploitation of hard fallback foods. Here, we show that hard-object feeding cannot explain the extreme morphology of Paranthropus boisei.
View Article and Find Full Text PDF