Publications by authors named "Kevin R Jones"

Article Synopsis
  • There is a shortage of shuttle vectors for researching the genetics of Porphyromonas gingivalis and similar species, so researchers examined various strains for plasmids but found none in P. gingivalis.
  • They then created new shuttle vectors, pG106 and pG108, by combining parts of the pUC19 plasmid from E. coli and the pYH420 plasmid derived from P. asaccharolytica.
  • These new shuttle vectors can be successfully used for molecular cloning in both P. gingivalis and B. thetaiotaomicron, enabling gene expression studies and the testing of gene complementation, such as rescuing a mutant strain of P. gingivalis.
View Article and Find Full Text PDF

Most small molecule drugs act on living systems by physically interacting with specific proteins and modulating target function. Identification of drug binding targets, within the complex milieu of the human proteome, remains a challenging task of paramount importance in drug discovery. Existing approaches for target identification employ complex workflows with limited throughput.

View Article and Find Full Text PDF

Permanency is a key child welfare system goal for the children they serve. This study addresses three key research questions: (1) How do older youth in foster care define their personal permanency goals? (2) How much progress have these youth made in achieving their personal permanency goals and other aspects of relational permanency, and how does this vary by gender, race, and age? and (3) What transition-related outcomes are associated with relational permanency achievement? Surveys were conducted with 97 youth between the ages of 14 and 20 currently in care. Over three-fourths of participants had an informal/relational permanency goal; however, only 6.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) regulates both action potential (AP) generation and neuron morphology. However, whether BDNF-induced changes in neuron morphology directly impact AP generation is unclear. We quantified BDNF's effect on cultured cortical neuron morphological parameters and found that BDNF stimulates dendrite growth and addition of dendrites while increasing both excitatory and inhibitory presynaptic inputs in a spatially restricted manner.

View Article and Find Full Text PDF

Sorting of mRNAs in neuronal dendrites relies upon inducible transport mechanisms whose molecular bases are poorly understood. We investigated here the mechanism of inducible dendritic targeting of rat brain-derived neurotrophic factor (BDNF) mRNAs as a paradigmatic example. BDNF encodes multiple mRNAs with either short or long 3' UTR, both hypothesized to harbor inducible dendritic targeting signals.

View Article and Find Full Text PDF

A large proportion of vagal afferents are dependent on neurotrophin-3 (NT-3) for survival. NT-3 is expressed in developing gastrointestinal (GI) smooth muscle, a tissue densely innervated by vagal mechanoreceptors, and thus could regulate their survival. We genetically ablated NT-3 from developing GI smooth muscle and examined the pattern of loss of NT-3 expression in the GI tract and whether this loss altered vagal afferent signaling or feeding behavior.

View Article and Find Full Text PDF

Dendritic spines are major sites of excitatory synaptic transmission and changes in their numbers and morphology have been associated with neurodevelopmental and neurodegenerative disorders. Brain-derived Neurotrophic Factor (BDNF) is a secreted growth factor that influences hippocampal, striatal and neocortical pyramidal neuron dendritic spine density. However, the mechanisms by which BDNF regulates dendritic spines and how BDNF interacts with other regulators of spines remain unclear.

View Article and Find Full Text PDF

How neural circuits associated with sexually dimorphic organs are differentially assembled during development is unclear. Here, we report a sexually dimorphic pattern of mouse mammary gland sensory innervation and the mechanism of its formation. Brain-derived neurotrophic factor (BDNF), emanating from mammary mesenchyme and signaling through its receptor TrkB on sensory axons, is required for establishing mammary gland sensory innervation of both sexes at early developmental stages.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) is a secreted protein important for development and function of neocortical circuitry. Although it is well established that BDNF contributes to the sculpting of dendrite structure and modulation of synapse strength, the range and directionality of BDNF signaling underlying these functions are incompletely understood. To gain insights into the role of BDNF at the level of individual neurons, we tested the cell-autonomous requirements for Bdnf in visual cortical layer 2/3 neurons.

View Article and Find Full Text PDF

Mutations in the Bdnf gene, which produces transcripts with either short or long 3' untranslated regions (3' UTRs), cause human obesity; however, the precise role of brain-derived neurotrophic factor (BDNF) in the regulation of energy balance is unknown. Here we show the relationship between Bdnf mRNA with a long 3' UTR (long 3' UTR Bdnf mRNA), leptin, neuronal activation and body weight. We found that long 3' UTR Bdnf mRNA was enriched in the dendrites of hypothalamic neurons and that insulin and leptin could stimulate its translation in dendrites.

View Article and Find Full Text PDF

Progenitor cells in the cerebral cortex undergo dynamic cellular and molecular changes during development. Sall1 is a putative transcription factor that is highly expressed in progenitor cells during development. In humans, the autosomal dominant developmental disorder Townes-Brocks syndrome (TBS) is associated with mutations of the SALL1 gene.

View Article and Find Full Text PDF

In the developing mammalian basal telencephalon, neural progenitors from the subpallium generate the majority of inhibitory medium spiny neurons (MSNs) in the striatum, while both pallial- and subpallial-derived progenitors contribute to excitatory and inhibitory neuronal diversity in the amygdala. Using a combination of approaches, including genetic fate mapping, cell birth dating, cell migration assays, and electrophysiology, we find that cells derived from the Emx1 lineage contribute to two distinct neuronal populations in the mature basal forebrain: inhibitory MSNs in the striatum and functionally distinct subclasses of excitatory neurons in the amygdala. Our cell birth-dating studies reveal that these two populations are born at different times during early neurogenesis, with the amygdala population born before the MSNs.

View Article and Find Full Text PDF

An unusual property of the olfactory system is that sensory input at the level of the first synapse in the olfactory bulb takes place at two mirror-image glomerular maps that appear identical across the axis of symmetry. It is puzzling how two identical odor maps would contribute to sensory function. The functional units in these maps are the glomeruli, ovoid neuropil structures formed by axons from olfactory sensory neurons expressing the same olfactory receptor.

View Article and Find Full Text PDF

The brain produces two brain-derived neurotrophic factor (BDNF) transcripts, with either short or long 3' untranslated regions (3' UTRs). The physiological significance of the two forms of mRNAs encoding the same protein is unknown. Here, we show that the short and long 3' UTR BDNF mRNAs are involved in different cellular functions.

View Article and Find Full Text PDF

The neurotrophin brain-derived neurotrophic factor (BDNF) has been implicated in the generation and differentiation of new olfactory sensory neurons (OSNs) and in the regulation of branching of OSN axons in their target glomeruli. However, previous reports of BDNF mRNA and protein expression in olfactory epithelium and olfactory bulb (OB) have been inconsistent, raising questions on the proposed roles for BDNF. Here, we report on beta-galactosidase (beta-gal) expression in adult gene-targeted mice where the BDNF promoter drives expression of the Escherichia coli lacZ gene (BDNF(lacZneo) mice).

View Article and Find Full Text PDF

Many pathways have been proposed as contributing to Huntington's disease (HD) pathogenesis, but generally the in vivo effects of their perturbation have not been compared with reference data from human patients. Here we examine how accurately mechanistically motivated and genetic HD models recapitulate the striatal gene expression phenotype of human HD. The representative genetic model was the R6/2 transgenic mouse, which expresses a fragment of the huntingtin protein containing a long CAG repeat.

View Article and Find Full Text PDF
Article Synopsis
  • Gene expression analysis of healthy brain tissues in humans and mice helps identify differences between regions, which could shed light on neurodegenerative diseases and brain evolution.
  • Comparative studies show that specific brain regions in both species exhibit distinct gene expression profiles, with a significant correlation in regional gene expression patterns.
  • Regionally enriched genes also demonstrate greater conservation at both sequence and expression levels, suggesting that findings from mouse models may effectively translate to understanding human neurodegenerative diseases.
View Article and Find Full Text PDF

During development, Pax6 is expressed in a rostrolateral-high to caudomedial-low gradient in the majority of the cortical radial glial progenitors and endows them with neurogenic properties. Using a Cre/loxP-based approach, we studied the effect of conditional activation of two Pax6 isoforms, Pax6 and Pax6-5a, on the corticogenesis of transgenic mice. We found that activation of either Pax6 or Pax6-5a inhibits progenitor proliferation in the developing cortex.

View Article and Find Full Text PDF

Embryonic cortical neural stem cells apparently have a transient existence, as they do not persist in the adult cortex. We sought to determine the fate of embryonic cortical stem cells by following Emx1(IREScre); LacZ/EGFP double-transgenic murine cells from midgestation into adulthood. Lineage tracing in combination with direct cell labeling and time-lapse video microscopy demonstrated that Emx1-lineage embryonic cortical stem cells migrate ventrally into the striatal germinal zone (GZ) perinatally and intermingle with striatal stem cells.

View Article and Find Full Text PDF

Cajal-Retzius (CR) cells, the predominant source of reelin in developing neocortex, are thought to be essential for the inside out formation of neocortical layers. Fate mapping revealed that a large population of neocortical CR cells arises from the cortical hem. To investigate the function of CR cells, we therefore genetically ablated the hem.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) has been implicated in regulating neuronal survival, differentiation, and synaptic plasticity. Reduced expression of BDNF within the substantia nigra accompanies the deterioration of dopaminergic neurons in Parkinson's disease (PD) patients. Analysis of the effects of long-term BDNF absence from the CNS has been difficult because of the early postnatal lethality of BDNF-/- mice.

View Article and Find Full Text PDF

Mechanisms controlling brain size include the regulation of neural progenitor cell proliferation, differentiation, survival and migration. Here we show that ephrin-A/EphA receptor signalling plays a key role in controlling the size of the mouse cerebral cortex by regulating cortical progenitor cell apoptosis. In vivo gain of EphA receptor function, achieved through ectopic expression of ephrin-A5 in early cortical progenitors expressing EphA7, caused a transient wave of neural progenitor cell apoptosis, resulting in premature depletion of progenitors and a subsequent dramatic decrease in cortical size.

View Article and Find Full Text PDF

Although netrins are an important family of neuronal guidance proteins, intracellular mechanisms that mediate netrin function are not well understood. Here we show that netrin-1 induces tyrosine phosphorylation of proteins including focal adhesion kinase (FAK) and the Src family kinase Fyn. Blockers of Src family kinases inhibited FAK phosphorylation and axon outgrowth and attraction by netrin.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, modulates neuronal survival, differentiation, and synaptic function. Reduced BDNF expression in the cortex caused by mutation of the huntingtin gene has been suggested to play a role in the striatal degeneration observed in Huntington's disease. BDNF expression rises dramatically in the cortex during the first few weeks of postnatal life in mice.

View Article and Find Full Text PDF

Numb and Numblike, conserved homologs of Drosophila Numb, have been implicated in cortical neurogenesis; however, analysis of their involvement in later stages of cortical development has been hampered by early lethality of double mutants in previous studies. Using Emx1(IREScre) to induce more restricted inactivation of Numb in the dorsal forebrain of numblike null mice beginning at E9.5, we have generated viable double mutants that displayed striking brain defects.

View Article and Find Full Text PDF