Publications by authors named "Kevin Plant"

Background: Exposing a healthy wound bed for skin grafting is an important step during burn surgery to ensure graft take and maintain good functional outcomes. Currently, the removal of non-viable tissue in the burn wound bed during excision is determined by expert clinician judgment. Using a porcine model of tangential burn excision, we investigated the effectiveness of an intraoperative multispectral imaging device combined with artificial intelligence to aid clinician judgment for the excision of non-viable tissue.

View Article and Find Full Text PDF

Currently, the incorrect judgment of burn depth remains common even among experienced surgeons. Contributing to this problem are change in burn appearance throughout the first week requiring periodic evaluation until a confident diagnosis can be made. To overcome these issues, we investigated the feasibility of an artificial intelligence algorithm trained with multispectral images of burn injuries to predict burn depth rapidly and accurately, including burns of indeterminate depth.

View Article and Find Full Text PDF

Noncontact photoplethysmography (PPG) has been studied as a method to provide low-cost, noninvasive, two-dimensional blood oxygenation measurements and medical imaging for a variety of near-surface pathologies. To evaluate this technology in a laboratory setting, dynamic tissue phantoms were developed with tunable parameters that mimic physiologic properties of the skin, including blood vessel volume change, pulse wave frequency, and tissue scattering and absorption. Tissue phantoms were generated using an elastic tubing to represent a blood vessel where the luminal volume could be modulated with a pulsatile fluid flow.

View Article and Find Full Text PDF

Burn excision, a difficult technique owing to the training required to identify the extent and depth of injury, will benefit from a tool that can cue the surgeon as to where and how much to resect. We explored two rapid and noninvasive optical imaging techniques in their ability to identify burn tissue from the viable wound bed using an animal model of tangential burn excision. Photoplethysmography (PPG) imaging and multispectral imaging (MSI) were used to image the initial, intermediate, and final stages of burn excision of a deep partial-thickness burn.

View Article and Find Full Text PDF

Many nanosized particulate systems are being developed as intravascular carriers to increase the levels of therapeutic agents delivered to targets, with the fewest side effects. The surface of these carriers is often functionalized with biological recognition molecules for specific, targeted delivery. However, there are a series of biological barriers in the body that prevent these carriers from localizing at their targets at sufficiently high therapeutic concentrations.

View Article and Find Full Text PDF