Augment Altern Commun
December 2024
Social interaction plays a pivotal role in human development, influencing cognitive, emotional, and communicative growth across all stages of life. Integrating augmentative and alternative communication (AAC) devices into social interactions, especially during dynamic activities such as play, introduces cognitive complexity. This forum explores leveraging smart device design and technology to help integrate AAC into dynamic social interactions, focusing specifically on play.
View Article and Find Full Text PDFAugmentative and alternative communication (AAC) supports offer communication aids for individuals with severe speech and physical impairments. This study presents the development and proof of concept for an iPad application designed to evaluate the design preferences of both adults and children for AAC scanning and emerging P300-brain-computer interface access to AAC (BCI-AAC), both of which utilize item highlighting. Developed through a multidisciplinary and iterative process, the application incorporates customizable highlighting methods and display options for spelling-based and pictorial symbol interfaces.
View Article and Find Full Text PDFPurpose: To enable the codesign of a training framework for brain-computer interfaces for augmentative and alternative communications access (BCI-AAC), the aim of this study is to evaluate the initial BCI-AAC training needs and preferred learning strategies of speech-language pathologists (SLPs) with AAC experience.
Method: Eleven SLPs employed across a broad range of settings completed a semi-structured interview. A grounded theory approach alongside peer debriefing and review, member checking, and triangulation procedures were utilised for thematic analysis to help ensure data reliability and credibility.
Disabil Rehabil Assist Technol
January 2025
Purpose: Prior research has begun establishing the efficacy of animation in brain-computer interfaces access to augmentative and alternative communication (BCI-AAC). However, the use of animation in P300-BCI-AAC for children is in the early stages and largely limited to single item highlighting of extended durations. In pursuit of practical application, the present study aims to evaluate children's event-related potential (ERP) characteristics and user experience during a task involving an animated P300-BCI-AAC system.
View Article and Find Full Text PDFChildren with complex communication needs often have multiple disabilities including visual impairments that impact their ability to interact with aided augmentative and alternative communication (AAC) systems. Just as the field benefited from a consideration of visual cognitive neuroscience in construction of visual displays, an exploration of psychoacoustics can potentially assist in maximizing the possibilities within AAC systems when the visual channel is either (a) not the primary sensory mode, or (b) is one that can be augmented to ultimately benefit AAC outcomes. The purpose of this paper is to highlight background information about psychoacoustics and present possible future directions for the design of aided AAC system technologies for children with visual impairments who rely on auditory information to learn and utilize AAC.
View Article and Find Full Text PDFPurpose: There is an increasing focus on using motion in augmentative and alternative communication (AAC) systems. In considering brain-computer interface access to AAC (BCI-AAC), motion may provide a simpler or more intuitive avenue for BCI-AAC control. Different motion techniques may be utilized in supporting competency with AAC devices including simple (e.
View Article and Find Full Text PDFUnlabelled: Brain-computer interfaces for augmentative and alternative communication (BCI-AAC) may help overcome physical barriers to AAC access. Traditionally, visually based P300-BCI-AAC displays utilize a symmetrical grid layout. Contextual scene displays are composed of context-rich images (e.
View Article and Find Full Text PDFPurpose: The purpose of this article is to consider how, alongside engineering advancements, noninvasive brain-computer interface (BCI) for augmentative and alternative communication (AAC; BCI-AAC) developments can leverage implementation science to increase the clinical impact of this technology. We offer the Consolidated Framework for Implementation Research (CFIR) as a structure to help guide future BCI-AAC research. Specifically, we discuss CFIR primary domains that include intervention characteristics, the outer and inner settings, the individuals involved in the intervention, and the process of implementation, alongside pertinent subdomains including adaptability, cost, patient needs and recourses, implementation climate, other personal attributes, and the process of engaging.
View Article and Find Full Text PDFPurpose: In contrast to the traditional grid-based display, visual scene displays (VSDs) offer a new paradigm for aided communication. For individuals who cannot select items from an AAC display by direct selection due to physical impairments, AAC access can be supported via methods such as item scanning. Item scanning sequentially highlights items on a display until the individual signals for selection.
View Article and Find Full Text PDFPurpose Visual scene displays (VSDs) can support augmentative and alternative communication (AAC) success for children and adults with complex communication needs. Static VSDs incorporate contextual photographs that include meaningful events, places, and people. Although the processing of VSDs has been studied, their power as a medium to effectively convey meaning may benefit from the perspective of individuals who regularly engage in visual storytelling.
View Article and Find Full Text PDFAugmentative and alternative communication (AAC) techniques can provide access to communication for individuals with severe physical impairments. Brain-computer interface (BCI) access techniques may serve alongside existing AAC access methods to provide communication device control. However, there is limited information available about how individual perspectives change with motor-based BCI-AAC learning.
View Article and Find Full Text PDFCurrent BCI-AAC systems largely utilize custom-made software and displays that may be unfamiliar to AAC stakeholders. Further, there is limited information available exploring the heterogenous profiles of individuals who may use BCI-AAC. Therefore, in this study, we aimed to evaluate how individuals with amyotrophic lateral sclerosis (ALS) learned to control a motor-based BCI switch in a row-column AAC scanning pattern, and person-centered factors associated with BCI-AAC performance.
View Article and Find Full Text PDFPurpose: Brain-computer interface (BCI) techniques may provide computer access for individuals with severe physical impairments. However, the relatively hidden nature of BCI control obscures how BCI systems work behind the scenes, making it difficult to understand electroencephalography (EEG) records the BCI related brain signals, brain signals are recorded by EEG, and these signals are targeted for BCI control. Furthermore, in the field of speech-language-hearing, signals targeted for BCI application have been of primary interest to clinicians and researchers in the area of augmentative and alternative communication (AAC).
View Article and Find Full Text PDFPurpose Speech motor control relies on neural processes for generating sensory expectations using an efference copy mechanism to maintain accurate productions. The N100 auditory event-related potential (ERP) has been identified as a possible neural marker of the efference copy with a reduced amplitude during active listening while speaking when compared to passive listening. This study investigates N100 suppression while controlling a motor imagery speech synthesizer brain-computer interface (BCI) with instantaneous auditory feedback to determine whether similar mechanisms are used for monitoring BCI-based speech output that may both support BCI learning through existing speech motor networks and be used as a clinical marker for the speech network integrity in individuals without severe speech and physical impairments.
View Article and Find Full Text PDFAssist Technol Outcomes Benefits
January 2019
Purpose: Brain-computer interfaces (BCIs) aim to provide access to augmentative and alternative communication (AAC) devices via brain activity alone. However, while BCI technology is expanding in the laboratory setting there is minimal incorporation into clinical practice. Building upon established AAC research and clinical best practices may aid the clinical translation of BCI practice, allowing advancements in both fields to be fully leveraged.
View Article and Find Full Text PDF: The use of standardized screening protocols may inform brain-computer interface (BCI) research procedures to help maximize BCI performance outcomes and provide foundational information for clinical translation. Therefore, in this study we developed and evaluated a new BCI screening protocol incorporating cognitive, sensory, motor and motor imagery tasks. : Following development, BCI screener outcomes were compared to the Amyotrophic Lateral Sclerosis Cognitive Behavioral Screen (ALS-CBS), and ALS Functional Rating Scale (ALS-FRS) for twelve individuals with a neuromotor disorder.
View Article and Find Full Text PDFPurpose: Brain-computer interfaces (BCIs) can provide access to augmentative and alternative communication (AAC) devices using neurological activity alone without voluntary movements. As with traditional AAC access methods, BCI performance may be influenced by the cognitive-sensory-motor and motor imagery profiles of those who use these devices. Therefore, we propose a person-centered, feature matching framework consistent with clinical AAC best practices to ensure selection of the most appropriate BCI technology to meet individuals' communication needs.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
April 2018
We conducted a study of a motor imagery brain-computer interface (BCI) using electroencephalography to continuously control a formant frequency speech synthesizer with instantaneous auditory and visual feedback. Over a three-session training period, sixteen participants learned to control the BCI for production of three vowel sounds (/ textipa i/ [heed], / textipa A/ [hot], and / textipa u/ [who'd]) and were split into three groups: those receiving unimodal auditory feedback of synthesized speech, those receiving unimodal visual feedback of formant frequencies, and those receiving multimodal, audio-visual (AV) feedback. Audio feedback was provided by a formant frequency artificial speech synthesizer, and visual feedback was given as a 2-D cursor on a graphical representation of the plane defined by the first two formant frequencies.
View Article and Find Full Text PDFPurpose: We investigated how overt visual attention and oculomotor control influence successful use of a visual feedback brain-computer interface (BCI) for accessing augmentative and alternative communication (AAC) devices in a heterogeneous population of individuals with profound neuromotor impairments. BCIs are often tested within a single patient population limiting generalization of results. This study focuses on examining individual sensory abilities with an eye toward possible interface adaptations to improve device performance.
View Article and Find Full Text PDFAm J Speech Lang Pathol
February 2018
Purpose: Brain-computer interfaces (BCIs) have the potential to improve communication for people who require but are unable to use traditional augmentative and alternative communication (AAC) devices. As BCIs move toward clinical practice, speech-language pathologists (SLPs) will need to consider their appropriateness for AAC intervention.
Method: This tutorial provides a background on BCI approaches to provide AAC specialists foundational knowledge necessary for clinical application of BCI.
Am J Speech Lang Pathol
November 2014
Purpose: This study assessed the benefit of using electropalatography (EPG) in treatment aimed at habilitating individuals with nonspeech orofacial myofunctional disorders (NSOMD).
Method: The study used a multiple-baseline design across 3 female participants who were referred for an evaluation and possible treatment of their NSOMD. Treatment sessions were 30 min and provided twice weekly.
Int J Orofacial Myology
November 2013