Publications by authors named "Kevin P Pipe"

Purpose: To test the safety and preliminary efficacy of rapid, nonpharmacologic anesthesia via cooling for intravitreal injections.

Design: Single-center, randomized phase 1 dose-ranging safety study (ClinicalTrials.gov identifier, NCT02872012).

View Article and Find Full Text PDF

In search of the molecular identities of cold-sensing receptors, we carried out an unbiased genetic screen for cold-sensing mutants in C. elegans and isolated a mutant allele of glr-3 gene that encodes a kainate-type glutamate receptor. While glutamate receptors are best known to transmit chemical synaptic signals in the CNS, we show that GLR-3 senses cold in the peripheral sensory neuron ASER to trigger cold-avoidance behavior.

View Article and Find Full Text PDF

High thermal conductivity is critical for many applications of polymers (for example, packaging of light-emitting diodes), in which heat must be dissipated efficiently to maintain the functionality and reliability of a system. Whereas uniaxially extended chain morphology has been shown to significantly enhance thermal conductivity in individual polymer chains and fibers, bulk polymers with coiled and entangled chains have low thermal conductivities (0.1 to 0.

View Article and Find Full Text PDF

Weak interchain interactions have been considered to be a bottleneck for heat transfer in polymers, while covalent bonds are believed to give a high thermal conductivity to polymer chains. For this reason, cross-linkers have been explored as a means to enhance polymer thermal conductivity; however, results have been inconsistent. Some studies show an enhancement in the thermal conductivity for polymers upon cross-linking, while others show the opposite trend.

View Article and Find Full Text PDF

Thermal conductivity is an important property for polymers, as it often affects product reliability (for example, electronics packaging), functionality (for example, thermal interface materials) and/or manufacturing cost. However, polymer thermal conductivities primarily fall within a relatively narrow range (0.1-0.

View Article and Find Full Text PDF

The thermal, electrical, and thermoelectric properties of aerogels of single-walled carbon nanotubes are characterized. Their ultralow density enables the transport properties of the junctions to be distinguished from those of the nanotubes themselves. Junction thermal and electrical conductances are found to be orders of magnitude larger than those found in typical dense SWCNT networks.

View Article and Find Full Text PDF

By carefully tuning the thickness of a compliant thin film placed within an acoustic cavity, we achieve coherent control of the cavity's acoustic resonances, analogous to the operation of an optical etalon. This technique is demonstrated using a supported membrane oscillator in which multiple high-frequency harmonic resonances are simultaneously optoexcited by an ultrafast laser. Theoretical and computational methods are used to analyze the selective strengthening or suppression of these resonances by constructive or destructive interference.

View Article and Find Full Text PDF

Electrical conductivity is an important property for technological applications of nanofluids that has not been widely studied. Conventional descriptions such as the Maxwell model do not account for surface charge effects that play an important role in electrical conductivity, particularly at higher nanoparticle volume fractions. Here, we perform electrical characterizations of propylene glycol-based ZnO nanofluids with volume fractions as high as 7%, measuring up to a 100-fold increase in electrical conductivity over the base fluid.

View Article and Find Full Text PDF

We propose a novel solar cell architecture consisting of multiple fiber-based photovoltaic (PV) cells. Each PV fiber element is designed to maximize the power conversion efficiency within a narrow band of the incident solar spectrum, while reflecting other spectral components through the use of optical microcavity effects and distributed Bragg reflector (DBR) coatings. Combining PV fibers with complementary absorption and reflection characteristics into volume-filling arrays enables spectrally tuned modules having an effective dispersion element intrinsic to the architecture, resulting in high external quantum efficiency over the incident spectrum.

View Article and Find Full Text PDF

We report strong surface plasmon polariton mediated transfer of energy between molecular excitons across the metallic cathode of an electrically-pumped organic heterostructure. The donor molecular excitons at the organic heterojunction resonantly excite surface plasmon modes on both sides of the optically thick metal electrode, which evanescently couple to dye molecules near the electrode's exterior surface. Dye fluorescence in the capping layer on the exterior of the device shows a 6.

View Article and Find Full Text PDF

An organic light-emitting device was fabricated on a commercial atomic force microscopy (AFM) probe having a pyramidal tip by a lithography-free vacuum thermal evaporation (VTE) process. The line-of-sight molecular transport characteristic of VTE results in controlled thickness variation across the nonplanar substrate, such that localized current injection occurs at the tip region. Furthermore, the high curvature of the AFM tip vertex concentrates the electric field, causing highly localized bipolar charge injection, accompanied by photon emission from a region less than a micrometer across.

View Article and Find Full Text PDF

We have probed the local thermoelectric power of semiconductor nanostructures with the use of ultrahigh-vacuum scanning thermoelectric microscopy. When applied to a p-n junction, this method reveals that the thermoelectric power changes its sign abruptly within 2 nanometers across the junction. Because thermoelectric power correlates with electronic structure, we can profile with nanometer spatial resolution the thermoelectric power, band structures, and carrier concentrations of semiconductor junctions that constitute the building blocks of thermoelectric, electronic, and optoelectronic devices.

View Article and Find Full Text PDF