The current toolkit for genetic manipulation in the model animal Drosophila melanogaster is extensive and versatile but not without its limitations. Here, we report a powerful and heritable method to knockdown gene expression in D. melanogaster using the self-cleaving N79 hammerhead ribozyme, a modification of a naturally occurring ribozyme found in the parasite Schistosoma mansoni.
View Article and Find Full Text PDFMethods Mol Biol
August 2022
The CRISPR/Cas9 system provides the means to make precise and purposeful modifications to the genome via homology-directed repair (HDR). In Drosophila, a wide variety of tools provide flexibility to achieve these ends. Here, we detail a method to generate precise genome edits via HDR that is efficient and broadly applicable to any Drosophila stock or species.
View Article and Find Full Text PDFGenome editing via homology-directed repair (HDR) has made possible precise and deliberate modifications to gene sequences. CRISPR/Cas9-mediated HDR is the simplest means to carry this out. However, technical challenges remain to improve efficiency and broaden applicability to any genetic background of as well as to other species.
View Article and Find Full Text PDFThis article was not made open access when initially published online, which was corrected before print publication. In addition, ORCID links were missing for 12 authors and have been added to the HTML and PDF versions of the article.
View Article and Find Full Text PDFThe study of newly evolved genes has long fascinated biologists, but large-scale studies of their expression dynamics and molecular function have provided conflicting interpretations of their biological impact. In this issue of , Kondo and colleagues (pp. 1841-1846) use extensive transcriptomic resources and current CRISPR/Cas9 technology to re-examine the functional impact of newly evolved genes in and find evidence of their biological impact on male reproduction.
View Article and Find Full Text PDFThousands of long noncoding RNAs (lncRNAs) have been annotated in eukaryotic genomes, but comparative transcriptomic approaches are necessary to understand their biological impact and evolution. To facilitate such comparative studies in Drosophila, we identified and characterized lncRNAs in a second Drosophilid-the evolutionary model Drosophila pseudoobscura Using RNA-Seq and computational filtering of protein-coding potential, we identified 1,589 intergenic lncRNA loci in D. pseudoobscura We surveyed multiple sex-specific developmental stages and found, like in Drosophila melanogaster, increasingly prolific lncRNA expression through male development and an overrepresentation of lncRNAs in the testes.
View Article and Find Full Text PDFBackground: The naid annelids contain a number of species that vary in their ability to regenerate lost body parts, making them excellent candidates for evolution of regeneration studies. However, scant sequence data exists to facilitate such studies. We constructed a cDNA library from the naid Pristina leidyi, a species that is highly regenerative and also reproduces asexually by fission, using material from a range of regeneration and fission stages for our library.
View Article and Find Full Text PDFCellular junction formation is an elaborate process that is dependent on the regulated synthesis, assembly and membrane targeting of constituting components. Here, we report on three Drosophila Ly6-like proteins essential for septate junction (SJ) formation. SJs provide a paracellular diffusion barrier and appear molecularly and structurally similar to vertebrate paranodal septate junctions.
View Article and Find Full Text PDFRegeneration, the replacement of lost body parts, is widespread yet highly variable among animals. Explaining this variation remains a major challenge in biology. Great strides have been made in understanding the phylogenetic distribution, ecological context and developmental basis of regeneration, and these new data are yielding novel insights into why and how regeneration evolves.
View Article and Find Full Text PDFEzrin/radixin/moesin (ERM) family members provide a regulated link between the cortical actin cytoskeleton and the plasma membrane to govern membrane structure and organization. Here, we report the crystal structure of intact insect moesin, revealing that its essential yet previously uncharacterized alpha-helical domain forms extensive interactions with conserved surfaces of the band four-point-one/ezrin/radixin/moesin (FERM) domain. These interdomain contacts provide a functional explanation for how PIP(2) binding and tyrosine phosphorylation of ezrin lead to activation, and provide an understanding of previously enigmatic loss-of-function missense mutations in the tumor suppressor merlin.
View Article and Find Full Text PDF