Described is the development of a polymeric micelle drug delivery platform that addresses the physical property limitations of many nanovectors. The system employs triblock copolymers comprised of a hydrophilic poly(ethylene glycol) (PEG) block, and two poly(amino acid) (PAA) blocks: a stabilizing cross-linking central block, and a hydrophobic drug encapsulation block. Detailed description of synthetic strategies and considerations found to be critical are discussed.
View Article and Find Full Text PDFNanoparticle drug carriers hold potential to improve current cancer therapy by delivering payload to the tumor environment and decreasing toxic side effects. Challenges in nanotechnology drug delivery include plasma instability, site-specific delivery, and relevant biomarkers. We have developed a triblock polymer comprising a hydroxamic acid functionalized center block that chelates iron to form a stabilized micelle that physically entraps chemotherapeutic drugs in the hydrophobic core.
View Article and Find Full Text PDFJ Polym Sci A Polym Chem
September 2016
Azido-functionalized poly(ethylene glycol) (PEG) derivatives are finding ever-increasing applications in the areas of conjugation chemistry and targeted drug delivery by their judicious incorporation into nanoparticle-forming polymeric systems. Quantification of azide incorporation into such PEG polymers is essential to their effective use. H Nuclear Magnetic Resonance (NMR) analysis offers the simplest approach; however, the relevant adjacent azide-bearing methylene protons are often obscured by the PEG manifold signals.
View Article and Find Full Text PDFRecent emphasis has focused on the development of rationally designed polymer-based micelle carriers for drug delivery. The current work tests the hypothesis that target specificity can be enhanced by micelles with cancer-specific ligands. In particular, we describe the synthesis and characterization of a new gadolinium texaphyrin (Gd-Tx) complex encapsulated in an IVECT micellar system, stabilized through Fe(III) cross-linking and targeted with multiple copies of a specific ligand for the melanocortin 1 receptor (MC1R), which has been evaluated as a cell-surface marker for melanoma.
View Article and Find Full Text PDFThe incidence of malignant melanoma is rising faster than that of any other cancer in the United States. Because of its high expression on the surface of melanomas, MC1R has been investigated as a target for selective imaging and therapeutic agents against melanoma. Eight ligands were screened against cell lines engineered to overexpress MC1R, MC4R, or MC5R.
View Article and Find Full Text PDF