Tebuconazole (TEB) is a common triazole fungicide that has been widely applied in the treatment of fungal diseases. It is reported that TEB could exert harmful effects on mammals' health. However, the molecular mechanism involved in TEB toxicity remain undefined.
View Article and Find Full Text PDFDisturbances in Endoplasmic Reticulum (ER) homeostasis induce ER stress, which has been involved in the development and progression of various heart diseases, including arrhythmias, cardiac hypertrophy, ischemic heart diseases, dilated cardiomyopathy, and heart failure. A mild-to-moderate ER stress is considered beneficial and adaptative for heart functioning by engaging the pro-survival unfolded protein response (UPR) to restore normal ER function. By contrast, a severe or prolonged ER stress is detrimental by promoting cardiomyocyte apoptosis through hyperactivation of the UPR pathways.
View Article and Find Full Text PDFTebuconazole (TEB) is a common triazole fungicide that is widely used throughout the world in agriculture applications. We previously reported that TEB induces cardiac toxicity in rats. The aim of this study was to investigate the underlying mechanism of the toxicity induced by TEB in cardiac cells.
View Article and Find Full Text PDFMany recent studies have demonstrated the involvement of endoplasmic reticulum (ER) stress in the development of cardiac diseases and have suggested that modulation of ER stress response could be cardioprotective. Previously, we demonstrated that the deacetylase Sirtuin 1 (SIRT1) attenuates ER stress response and promotes cardiomyocyte survival. Here, we investigated whether and how autophagy plays a role in SIRT1-afforded cardioprotection against ER stress.
View Article and Find Full Text PDFEndogenous progenitor cells may participate in cardiac repair after a myocardial infarction (MI). The beta 2 adrenergic receptor (ß2-AR) pathway induces proliferation of c-kit+ cardiac progenitor cells (CPC) in vitro. We investigated if ß2-AR pharmacological stimulation could ameliorate endogenous CPC-mediated regeneration after a MI.
View Article and Find Full Text PDFAims: Endoplasmic reticulum (ER) stress has recently emerged as an important mechanism involved in the pathogenesis of cardiovascular diseases. However, the molecular mechanisms by which ER stress leads to cardiac dysfunction remain poorly understood.
Methods And Results: In this study, we evaluated the early cardiac effects of ER stress induced by tunicamycin (TN) in mice.