Background: The innovations of the "Omics Era" have ushered in significant advancements in genetic improvement of agriculturally important animal species through transforming genetics, genomics and breeding strategies. These advancements were often coordinated, in part, by support provided over 30Â years through the 1993-2023 National Research Support Project 8 (NRSP8, National Animal Genome Research Program, NAGRP) and affiliate projects focused on enabling genomic discoveries in livestock, poultry, and aquaculture species. These significant and parallel advances demand strategic planning of future research priorities.
View Article and Find Full Text PDFBackground: Deep learning (DL) often requires an image quality metric; however, widely used metrics are not designed for medical images.
Purpose: To develop an image quality metric that is specific to MRI using radiologists image rankings and DL models.
Study Type: Retrospective.
Cerebral blood flow at rest declines with age. However, age-related changes in functional measures of cerebrovascular health including cerebrovascular reactivity and neurovascular coupling are not well understood. Additionally, the effect of apolipoprotein E (APOE) ε4, a strong genetic risk factor for Alzheimer's disease, on cerebral blood flow and cerebrovascular function remains unclear.
View Article and Find Full Text PDFBackground: Cerebrospinal fluid (CSF) dynamics are increasingly studied in aging and neurological disorders. Models of CSF-mediated waste clearance suggest that altered CSF dynamics could play a role in the accumulation of toxic waste in the CNS, with implications for Alzheimer's disease and other proteinopathies. Therefore, approaches that enable quantitative and volumetric assessment of CSF flow velocities could be of value.
View Article and Find Full Text PDFBackground: Patients with syndromic heritable thoracic aortic diseases (sHTAD) who underwent prophylactic aortic root replacement are at high risk of distal aortic events, but the underlying mechanisms remain unclear. This prospective, longitudinal study evaluates the impact of valve-sparing aortic root replacement (VSARR) on aortic fluid dynamics and biomechanics in these patients.
Methods: Sixteen patients with Marfan or Loeys-Dietz syndrome underwent two time-resolved three-dimensional phase-contrast cardiovascular magnetic resonance (4D flow CMR) studies before (sHTAD-preSx) and after VSARR (sHTAD-postSx).
With contributions from colleagues across academia and industry, we have put together the annual reviews of research advances on drug biotransformation and bioactivation since 2016 led by Cyrus Khojasteh. While traditional small molecules and biologics are still predominant in drug discovery, we start to notice a paradigm shift toward new drug modalities (NDMs) including but not limited to peptide and oligonucleotide therapeutics, protein degraders (heterobifunctional degraders and molecule glues), conjugated drugs and covalent inhibitors. The readers can learn more on each new drug modality from several recent comprehensive reviews (Blanco et al.
View Article and Find Full Text PDFIntroduction: Proper placental development is crucial to fetal health but is challenging to functionally assess non-invasively and is thus poorly characterized in populations. Body mass index (BMI) has been linked with adverse outcomes, but the causative mechanism is uncertain. Velocity-selective arterial spin labeling (VS-ASL) MRI provides a method to non-invasively measure placental perfusion with robustness to confounding transit time delays.
View Article and Find Full Text PDFBackground: Recently, dynamic contrast-enhanced (DCE) MRI with ferumoxytol as contrast agent has recently been introduced for the noninvasive assessment of placental structure and function throughout. However, it has not been demonstrated under pathological conditions.
Purpose: To measure cotyledon-specific rhesus macaque maternal placental blood flow using ferumoxytol DCE MRI in a novel animal model for local placental injury.
Neurovascular 4D-Flow MRI enables non-invasive evaluation of cerebral hemodynamics including measures of cerebral blood flow (CBF), vessel pulsatility index (PI), and cerebral pulse wave velocity (PWV). 4D-Flow measures have been linked to various neurovascular disorders including small vessel disease and Alzheimer's disease; however, physiological and technical sources of variability are not well established. Here, we characterized sources of diurnal physiological and technical variability in cerebral hemodynamics using 4D-Flow in a retrospective study of cognitively unimpaired older adults (N = 750) and a prospective study of younger adults (N = 10).
View Article and Find Full Text PDFObjectives: Partial thrombosis of the false lumen (FL) in patients with chronic aortic dissection (AD) of the descending aorta has been associated with poor outcomes. Meanwhile, the fluid dynamic and biomechanical characteristics associated with partial thrombosis remain to be elucidated. This retrospective, single-center study tested the association between FL fluid dynamics and biomechanics and the presence and extent of FL thrombus.
View Article and Find Full Text PDFNeurological disorders can manifest with altered neurofluid dynamics in different compartments of the central nervous system. These include alterations in cerebral blood flow, cerebrospinal fluid (CSF) flow, and tissue biomechanics. Noninvasive quantitative assessment of neurofluid flow and tissue motion is feasible with phase contrast magnetic resonance imaging (PC MRI).
View Article and Find Full Text PDFThe accurate visualization and assessment of the complex cardiac and pulmonary structures in 3D is critical for the diagnosis and treatment of cardiovascular and respiratory disorders. Conventional 3D cardiac magnetic resonance imaging (MRI) techniques suffer from long acquisition times, motion artifacts, and limited spatiotemporal resolution. This study proposes a novel time-resolved 3D cardiopulmonary MRI reconstruction method based on spatial transformer networks (STNs) to reconstruct the 3D cardiopulmonary MRI acquired using 3D center-out radial ultra-short echo time (UTE) sequences.
View Article and Find Full Text PDFThis annual review is the eighth of its kind since 2016 (Baillie et al. 2016, Khojasteh et al. 2017, Khojasteh et al.
View Article and Find Full Text PDFMagn Reson Imaging Clin N Am
August 2023
Conventional vascular imaging methods have primarily focused on evaluating the vascular lumen. However, these techniques are not intended to evaluate vessel wall abnormalities where many cerebrovascular pathologies reside. With increased interest for the visualization and study of the vessel wall, high-resolution vessel wall imaging (VWI) has gained traction.
View Article and Find Full Text PDF4D Flow MRI is an advanced imaging technique for comprehensive non-invasive assessment of the cardiovascular system. The capture of the blood velocity vector field throughout the cardiac cycle enables measures of flow, pulse wave velocity, kinetic energy, wall shear stress, and more. Advances in hardware, MRI data acquisition and reconstruction methodology allow for clinically feasible scan times.
View Article and Find Full Text PDFMagnetic resonance angiography sequences, such as time-of-flight and contrast-enhanced angiography, provide clear depiction of vessel lumen, traditionally used to evaluate carotid pathologic conditions such as stenosis, dissection, and occlusion; however, atherosclerotic plaques with a similar degree of stenosis may vary tremendously from a histopathological standpoint. MR vessel wall imaging is a promising noninvasive method to evaluate the content of the vessel wall at high spatial resolution. This is particularly interesting in the case of atherosclerosis as vessel wall imaging can identify higher risk, vulnerable plaques as well as has potential applications in the evaluation of other carotid pathologic conditions.
View Article and Find Full Text PDFAge-related changes in cerebral hemodynamics are controversial and discrepancies may be due to experimental techniques. As such, the purpose of this study was to compare cerebral hemodynamics measurements of the middle cerebral artery (MCA) between transcranial Doppler ultrasound (TCD) and four-dimensional flow MRI (4D flow MRI). Twenty young (25 ± 3 years) and 19 older (62 ± 6 years) participants underwent two randomized study visits to evaluate hemodynamics at baseline (normocapnia) and in response to stepped hypercapnia (4% CO, and 6% CO) using TCD and 4D flow MRI.
View Article and Find Full Text PDFPurpose: This study addresses the challenges in obtaining abdominal 4D flow MRI of obese patients. We aimed to evaluate spectral saturation and inner volume excitation as methods to mitigating artifacts originating from adipose signals, with the goal of enhancing image quality and improving quantification.
Methods: Radial 4D flow MRI acquisitions with fat mitigation (inner volume excitation [IVE] and intermittent fat saturation [FS]) were compared to a standard slab selective excitation (SSE) in a test-retest study of 15 obese participants.
Background: Microvascular abnormalities and impaired gas transfer have been observed in patients with COVID-19. The progression of pulmonary changes in these patients remains unclear.
Research Question: Do patients hospitalized with COVID-19 without evidence of architectural distortion on structural imaging exhibit longitudinal improvements in lung function measured by using H and Xe MRI between 6 and 52Â weeks following hospitalization?
Study Design And Methods: Patients who were hospitalized with COVID-19 pneumonia underwent a pulmonary H and Xe MRI protocol at 6, 12, 25, and 51Â weeks following hospital admission in a prospective cohort study between November 2020 and February 2022.
Background Characterizing cerebrovascular hemodynamics in older adults is important for identifying disease and understanding normal neurovascular aging. Four-dimensional (4D) flow MRI allows for a comprehensive assessment of cerebral hemodynamics in a single acquisition. Purpose To establish reference intracranial blood flow and pulsatility index values in a large cross-sectional sample of middle-aged (45-65 years) and older (>65 years) adults and characterize the effect of age and sex on blood flow and pulsatility.
View Article and Find Full Text PDF. Model based deep learning (MBDL) has been challenging to apply to the reconstruction of 3D non-Cartesian MRI due to GPU memory demand because the entire volume is needed for data-consistency steps embedded in the model. This requirement makes holding even a single unroll in GPU memory difficult meaning memory efficient techniques used to increase unroll number like gradient checkpointing and deep equilibrium learning will not work well for high spatial resolution 3D non-Cartesian reconstructions without modification.
View Article and Find Full Text PDFPurpose: To investigate motion compensated, self-supervised, model based deep learning (MBDL) as a method to reconstruct free breathing, 3D pulmonary UTE acquisitions.
Theory And Methods: A self-supervised eXtra dimension MBDL architecture (XD-MBDL) was developed that combined respiratory states to reconstruct a single high-quality 3D image. Non-rigid motion fields were incorporated into this architecture by estimating motion fields from a lower resolution motion resolved (XD-GRASP) reconstruction.