Climatic changes threaten freshwater resources and aquatic ecosystem health in the Sierra Nevada (California, USA), which has important consequences for millions of people and the world's fifth largest economy. However, the timing and magnitude of ecological changes driven by hydroclimate oscillations remain poorly understood in California's headwater region. Here, we develop a precisely dated, annually to decadally resolved lake sediment record of ecological change from the eastern Sierra Nevada that spans the last three millennia.
View Article and Find Full Text PDFLakes are significant sources in global methane (CH) budgets. However, estimations of the magnitude of global CH emissions from lakes may be highly biased owing to the uncertainties in data originating from observation times, methods, and parameterizations of the gas transfer velocity (k). Here, we conducted continuous 48-hour measurements of CH fluxes using the floating chamber method seasonally at Lake Baihua, a small reservoir in southwestern China, and compared the results with estimates derived from boundary layer models.
View Article and Find Full Text PDFCyanobacterial blooms that form in response to climate warming and nutrient enrichment in freshwater lakes have become a global environmental challenge. Historical legacy effects and the mechanisms underlying cyanobacterial community succession are not well understood, especially for plateau lakes that are important global freshwater resources. This study investigated the temporal dynamics of cyanobacterial communities over centuries in response to nutrient enrichment and climate warming in low-latitude plateau lakes using high-throughput DNA sequencing of sedimentary DNA combined with traditional paleolimnological analyses.
View Article and Find Full Text PDFGlobal freshwater lakes are changing due to human activities and climate change. Unfortunately, sufficient long-term monitoring is lacking for most lakes. However, lake sedimentary archives can extend the instrumental record and reveal historical environmental trends.
View Article and Find Full Text PDFClimate change and anthropogenic activities are expected to impact the environmental behaviors and fates of persistent organic pollutants (POPs), however, quantitative studies on these combined factors are scarce. In this study, dichlorodiphenyltrichloroethane (DDTs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) were used as examples to identify how and when those factors may be related to the deposition of POPs in the sediment of Lake Chaohu, China, using generalized additive models (GAMs). Three historical trends of DDT, PAH, and PCB deposition were delineated in a dated sediment core encompassing ~100 years of historical record: a steady state or gradually increasing stage, a rapidly increasing stage, and a declining stage.
View Article and Find Full Text PDFStudies that address the potential effects of climate and anthropogenic activities on lacustrine phytoplankton succession are scarce in the shallow lakes. In the present work, the succession of phytoplankton community inferred from sedimentary pigments has been investigated; the impacts of climate and anthropogenic activities on the succession have been evaluated by the generalized additive models (GAMs) in a shallow eutrophied lake, Lake Chaohu, located eastern China. The results show that phytoplankton succession can be divided into two periods: pre-1960s and post 1960s.
View Article and Find Full Text PDFSediments from a waste pit in Houston Ship Channel (HSC) were characterized using a number of molecular markers of natural organic matter fractions (e.g., pyrogenic carbon residues, PAHs, lignins), in addition to dioxins, in order to test the hypothesis that the dispersal and mobility of dioxins from the waste pit in the San Jacinto River is minimal.
View Article and Find Full Text PDFSalt marsh sediments generally undergo steady accumulation over time and thus are widely used to reconstruct the depositional histories of various anthropogenic contaminants derived from atmospheric and fluvial sources. Major hurricanes can significantly affect coastal landscapes by eroding and re-distributing sediment. Thus, each major hurricane can leave distinct signals in coastal wetland sediments.
View Article and Find Full Text PDFConcentrations of polychlorinated biphenyls (PCBs) were measured in dated sediment cores collected from the fifth largest freshwater lake in China, Lake Chaohu, to investigate PCB temporal trends, accumulation, and environmental fate. Total PCB concentrations in Lake Choahu sediments ranged from 0.03 to 24.
View Article and Find Full Text PDFMercury (Hg) was discharged in the late 1960s into the Penobscot River by a chlor-alkali production facility, HoltraChem. Using total Hg concentration profiles from 56 stations (58 sediment cores) in the Penobscot River (PBR), Mendall Marsh (MM), Orland River (OR) and Penobscot Estuary (ES), and sediment accumulation rates derived using detailed profiles of total Hg concentrations and radionuclide activities (Cs, Pu, Pb), recovery from system-wide Hg pollution was assessed. Total Hg concentration profiles showed sharp maxima at depths attributed in time to a 1967 release date, and were divided into two sections: the first 21years (1967-1988; rapid recovery), and the recent 21years (1988-2009; slower recovery).
View Article and Find Full Text PDFIn this study, a large scale investigation of semi-volatile organic compounds (SVOCs) in sediments from 52 lakes, located in five geographic regions across China, was conducted to assess sediment quality in terms of organic contaminants. Concentrations of polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), and polychlorinated biphenyls (PCBs) in sediment were found to range between 17.00-6,633, 0.
View Article and Find Full Text PDFSediments in the Houston Ship Channel and upper Galveston Bay, Texas, USA, are polluted with polychlorinated dibenzo-p-dioxins/furans (PCDD/F; ≤46,000 ng/kg dry weight (wt.)) with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most toxic congener, contributing >50 % of the total toxic equivalents (TEQ) at most locations. We measured PCDD/F concentrations in sediments and evaluated the potential for enhanced in situ biodegradation by surveying for Dehalococcoides mccartyi, an obligate organohalide respiring bacterium.
View Article and Find Full Text PDFKnowledge of spatial and temporal hydroclimatic differences is critical in understanding climatic mechanisms. Here we show striking hydroclimatic contrasts between northern and southern parts of the eastern margin of the Tibetan Plateau (ETP), and those between East Asian summer monsoon (EASM) and Indian summer monsoon (ISM) areas during the past ~2,000 years. During the Medieval Period, and the last 100 to 200 years, the southern ETP (S-ETP) area was generally dry (on average), while the northern ETP (N-ETP) area was wet.
View Article and Find Full Text PDFThe technique of DGT (diffusive gradients in thin films) using three diffusive gel thicknesses was applied to estimate the mobility and bioavailability of heavy metals in sediments and porewater of Lake Taihu, China. The DGT results showed significantly positive correlations between Co, Pb, Cd and Mn, and Ni and Fe concentrations in porewater. Cu and Zn showed a significantly negative correlation with Mn, due to Cu combination with carbonates and Zn derived from agricultural pollution, respectively.
View Article and Find Full Text PDFIn 2010, the Deepwater Horizon accident released 4.6–6.0 × 10(11) grams or 4.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2014
The diffusive gradients in thin films (DGT) technique was applied to obtain high spatial resolution of dissolved reactive phosphorus (DRP) concentrations in overlying water and sediment porewater in Lake Taihu. A strong positive correlation between total phosphorus (TP) in sediments and DRP concentrations using DGT was found in both of the sampled lake regions. For stations ZSW and DPG, which have high TP background values in sediments, DRP concentrations in overlying water and porewater were much higher than those at stations MLW, DPG, and HX.
View Article and Find Full Text PDFForaminifera responded to both heavy and light oiling of marshes relative to unoiled control sites by changes to both standing stock and depth of habitation (DOH) in sediment following the 2010 Macondo well blowout. Push cores were taken from the middle marsh at sites classified as unoiled, lightly oiled, and heavily oiled based on concentrations of total polycyclic aromatic hydrocarbons ([TPAH]). Cores were sliced and stained with rose Bengal to detect live specimens of foraminifera.
View Article and Find Full Text PDFJ Environ Sci (China)
September 2012
Recent sediments from Lake Chenghai, China, were investigated at high temporal resolution to trace both natural and anthropogenic effects on the lake using total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP), organic phosphorus (Po), inorganic phosphorus (Pi) and organic carbon and nitrogen stable isotopes (delta13Corg and delta15N) in a 137Cs-dated sediment core. The results indicated that the sedimentary record covers the last 60 years, during which the lake had undergone apparent changes in nutrient sources and productivity in response to nutrient loading. Prior to the late 1980s, the nutrient contents in sediments mainly originated from algae and lake productivity was relatively stable.
View Article and Find Full Text PDFIn this study, the sediment profiles of total organic carbon, total nitrogen, C/N ratios, total phosphorus, N/P ratios, C/P ratios, particle sizes, and stable carbon and nitrogen isotopes (δ(13)C and δ(15)N) were used to investigate natural and anthropogenic impacts on Lake Chaohu over the past 100 years. Before 1960, Lake Chaohu experienced low productivity and a relatively steady and low nutrient input. The increasing concentration and fluxes of total organic carbon, total nitrogen, total phosphorus, together with changes in the δ(13)C and δ(15)N of organic material in the sediment cores, suggested that the anthropogenic effects on trophic status first started because of an increase in nutrient input caused by a population increase in the drainage area.
View Article and Find Full Text PDFThis study has worked on the evaluation of the temporal and spatial evolution of heavy metal contamination in sediment taken from a shallow eutrophic lake, Lake Chaohu, China, over the last 100 years, and thereby used (137)Cs and (210)Pb dating, a PIRLA procedure, statistical analysis, geochemical normalization and a enrichment factor calculation (EF). Concentrations of 5174, 29 325, 10.7, 36.
View Article and Find Full Text PDFThe incomplete understanding of the processes which control aquatic nitrous oxide (N2O) production is partially due to a lack of onsite data with which to describe the temporal resolution of N2O production. To help resolve this, we directly measured the N2O saturation (relative to atmospheric partial pressure) on an hourly basis over two survey periods (July and September 2003) in Lake Taihu, a large eutrophic lake in eastern China. July N2O saturations displayed a distinct diurnal pattern, opposite to those observed by others in subtropical streams, but similar to N2O emissions observed from incubated estuarine sediments.
View Article and Find Full Text PDFRecent studies have shown that many persistent organic pollutants (POPs, e.g., polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and various pesticides), are strongly associated with carbonaceous materials (including organic carbon (OC) and black carbon (BC)).
View Article and Find Full Text PDFThe emission of N(2)O from China is globally significant, but relatively few direct observations have been made in many of the fresh water environments most likely to be important sites of N(2)O production. In this paper, N(2)O saturations were examined in the ecologically heterogeneous, eutrophied, Lake Taihu, as well as in surrounding rivers in eastern China. The emissions of N(2)O were estimated and compared with those from other landscapes within the Lake Taihu drainage basin.
View Article and Find Full Text PDFPolychlorinated dibenzo-p-dioxins and dibenzofurans (dioxins) are persistent contaminants that bioaccumulate and pose serious risks to humans. The primary objective of this study was to determine the history and mechanisms of dioxin accumulation in sediments of the Houston Ship Channel (HSC) using analytical data on natural and anthropogenic radionuclides (7Be, 137Cs, and 210Pb) and dioxins. Results showed that present-day sedimentary dioxin accumulation rates are orders of magnitude higher than atmospheric inputs to the HSC.
View Article and Find Full Text PDFPersistent organic pollutants, POPs (e.g., polychlorinated biphenyls) can seriously and deleteriously affect environmental quality and human health.
View Article and Find Full Text PDF