Background: Intracerebral hemorrhage (ICH) is a severe type of stroke with high mortality. Persistent hyperglycemia following ICH is linked to deteriorated neurological functions and death. However, the exacerbating effect of hyperglycemia on ICH injury at the molecular level is still unclear.
View Article and Find Full Text PDFObjectives: Palliative treatment of cyanotic congenital heart disease (CCHD) uses systemic-to-pulmonary conduits, often a modified Blalock-Taussig-Thomas shunt (mBTTs). Expanded polytetrafluoroethylene (ePTFE) mBTTs have associated risks for thrombosis and infection. The Human Acellular Vessel (HAV) (Humacyte, Inc) is a decellularized tissue-engineered blood vessel currently in clinical trials in adults for vascular trauma, peripheral artery disease, and end-stage renal disease requiring hemodialysis.
View Article and Find Full Text PDFDiabetes Mellitus (DM) is a major comorbid condition that increases susceptibility to stroke. Intracerebral hemorrhage (ICH), a devastating type of stroke, accounts for only 13% of the total stroke cases but is associated with higher mortality. Multimorbid models of DM and ischemic stroke have been widely studied; however, fewer pieces of evidence are available on the impact of DM on the outcomes of ICH injury.
View Article and Find Full Text PDFIntracerebral hemorrhage (ICH) resulting from the rupture of the blood vessels in the brain is associated with significantly higher mortality and morbidity. Clinical studies focused on alleviating the primary injury, hematoma formation and expansion, were largely ineffective, suggesting that secondary injury-induced inflammation and the formation of reactive species also contribute to the overall injury process. In this study, we explored the effects of cofilin knockdown in a mouse model of ICH.
View Article and Find Full Text PDFIschemic stroke is caused by a blockage of cerebral blood flow resulting in neuronal and glial hypoxia leading to inflammatory and reactive oxygen species (ROS)-mediated cell death. Nitric oxide (NO) formed by NO synthase (NOS) is known to be protective in ischemic stroke, however NOS has been shown to 'uncouple' under oxidative conditions to instead produce ROS. Nitrones are antioxidant molecules that are shown to trap ROS to then decompose and release NO.
View Article and Find Full Text PDFIntegr Med Insights
November 2015
Ginkgo biloba extract is an alternative medicine available as a standardized formulation, EGb 761(®), which consists of ginkgolides, bilobalide, and flavonoids. The individual constituents have varying therapeutic mechanisms that contribute to the pharmacological activity of the extract as a whole. Recent studies show anxiolytic properties of ginkgolide A, migraine with aura treatment by ginkgolide B, a reduction in ischemia-induced glutamate excitotoxicity by bilobalide, and an alternative antihypertensive property of quercetin, among others.
View Article and Find Full Text PDFUnlabelled: Reactive oxygen species (ROS) are important in regulating normal cell physiological functions, but when produced in excess lead to the augmented pathogenesis of various diseases. Among these, ischemia reperfusion injury, Alzheimer's disease and rheumatoid arthritis are particularly important. Since ROS can be counteracted by a variety of antioxidants, natural and synthetic antioxidants have been developed.
View Article and Find Full Text PDFIn this work, a series of α-phenyl-N-tert-butyl nitrones bearing one, two, or three substituents on the tert-butyl group was synthesized. Cyclic voltammetry (CV) was used to investigate their electrochemical properties and showed a more pronounced substituent effect for oxidation than for reduction. Rate constants of superoxide radical (O2(•-)) reactions with nitrones were determined using a UV-vis stopped-flow method, and phenyl radical (Ph(•)) trapping rate constants were measured by EPR spectroscopy.
View Article and Find Full Text PDFReactive nitrogen/oxygen species (ROS/RNS) at low concentrations play an important role in regulating cell function, signaling, and immune response but in unregulated concentrations are detrimental to cell viability. While living systems have evolved with endogenous and dietary antioxidant defense mechanisms to regulate ROS generation, ROS are produced continuously as natural by-products of normal metabolism of oxygen and can cause oxidative damage to biomolecules resulting in loss of protein function, DNA cleavage, or lipid peroxidation, and ultimately to oxidative stress leading to cell injury or death. Superoxide radical anion (O2•-) is the major precursor of some of the most highly oxidizing species known to exist in biological systems such as peroxynitrite and hydroxyl radical.
View Article and Find Full Text PDFReactive nitrogen species (RNS) such as nitrogen dioxide ((•)NO(2)), peroxynitrite (ONOO(-)), and nitrosoperoxycarbonate (ONOOCO(2)(-)) are among the most damaging species present in biological systems due to their ability to cause modification of key biomolecular systems through oxidation, nitrosylation, and nitration. Nitrone spin traps are known to react with free radicals and nonradicals via electrophilic and nucleophilic addition reactions and have been employed as reagents to detect radicals using electron paramagnetic resonance (EPR) spectroscopy and as pharmacological agents against oxidative stress-mediated injury. This study examines the reactivity of cyclic nitrones such as 5,5-dimethylpyrroline N-oxide (DMPO) with (•)NO(2), ONOO(-), ONOOCO(2)(-), SNAP, and SIN-1 using EPR.
View Article and Find Full Text PDFNitrone therapeutics has been employed in the treatment of oxidative stress-related diseases such as neurodegeneration, cardiovascular disease and cancer. The nitrone-based compound NXY-059, which is the first drug to reach clinical trials for the treatment of acute ischemic stroke, has provided promise for the development of more robust pharmacological agents. However, the specific mechanism of nitrone bioactivity remains unclear.
View Article and Find Full Text PDFNitrone spin traps have been employed as probes for the identification of transient radical species in chemical and biological systems using electron paramagnetic resonance (EPR) spectroscopy and have exhibited pharmacological activity against oxidative-stress-mediated diseases. Since superoxide radical anion (O2(•-)) is a major precursor to most reactive oxygen species and calix[4]pyrroles have been shown to exhibit high affinity to anions, a cyclic nitrone conjugate of calix[4]pyrrole (CalixMPO) was designed, synthesized, and characterized. Computational studies at the PCM/B3LYP/6-31+G(d,p)//B3LYP/6-31G(d) level suggest a pendant-type linkage between the calix[4]pyrrole and the nitrone to be the most efficient design for spin trapping of O2(•-), giving exoergic reaction enthalpies (ΔH(298K,aq)) and free energies (ΔG(298K,aq)) of -16.
View Article and Find Full Text PDF