Purpose: To compare optical coherence tomography (OCT) detected, optic nerve head (ONH) compliance within control and experimental glaucoma (EG) eyes of 15 monkeys at EG onset.
Methods: Intraocular pressure (IOP) was chronically elevated in one eye of each animal using a laser. Experimental glaucoma onset was identified using confocal scanning laser tomography (CSLT).
Purpose: To use optical coherence tomography (OCT) to test the hypothesis that optic nerve head (ONH) "cupping" in the monkey optic nerve transection (ONT) model does not include posterior laminar deformation.
Methods: Five monkeys (aged 5.5-7.
The lamina cribrosa likely plays an important role in retinal ganglion cell axon injury in glaucoma. We sought to (1) better understand optic nerve head (ONH) structure and anterior lamina cribrosa surface (ALCS) microarchitecture between fellow eyes of living, normal non-human primates and (2) characterize the time-course of in vivo structural changes in the ONH, ALCS microarchitecture, and retinal nerve fiber layer thickness (RNFLT) in non-human primate eyes with early experimental glaucoma (EG). Spectral domain optical coherence tomography (SDOCT) images of the ONH were acquired cross-sectionally in six bilaterally normal rhesus monkeys, and before and approximately every two weeks after inducing unilateral EG in seven rhesus monkeys.
View Article and Find Full Text PDFEn face adaptive optics scanning laser ophthalmoscope (AOSLO) images of the anterior lamina cribrosa surface (ALCS) represent a 2D projected view of a 3D laminar surface. Using spectral domain optical coherence tomography images acquired in living monkey eyes, a thin plate spline was used to model the ALCS in 3D. The 2D AOSLO images were registered and projected onto the 3D surface that was then tessellated into a triangular mesh to characterize differences in pore geometry between 2D and 3D images.
View Article and Find Full Text PDFPurpose: The ability to consistently resolve lamina cribrosa pores in vivo has applications in the study of optic nerve head and retinal disease mechanisms. Repeatability was assessed in imaging laminar pores in normal living eyes with a confocal adaptive optics scanning laser ophthalmoscope (AOSLO).
Methods: Reflectance images (840 nm) of the anterior lamina cribrosa were acquired using the AOSLO in four or more different sessions in two normal rhesus monkey eyes and three normal human eyes.
We present a direct slope-based correction algorithm to simultaneously control two deformable mirrors (DMs) in a woofer-tweeter adaptive optics system. A global response matrix was derived from the response matrices of each deformable mirror and the voltages for both deformable mirrors were calculated simultaneously. This control algorithm was tested and compared with a 2-step sequential control method in five normal human eyes using an adaptive optics scanning laser ophthalmoscope.
View Article and Find Full Text PDFThis study investigated contributions from the retinal On and Off pathways, and the spiking and nonspiking activity of neurons in those pathways to the pattern ERG of the mouse. Light-adapted pattern and ganzfeld ERGs were recorded from anesthetized C57BL/6 mice 3-4 months of age. Recordings were made before and after intravitreal injections of PDA (cis-2,3-piperidine-dicarboxylic acid) to block transmission to hyperpolarizing 2nd order and all 3rd order neurons, TTX (tetrodotoxin) to block Na(+)-dependent spiking, APB (2-amino-4-phosphonobutyric acid) to block synapses between photoreceptors and ON-bipolar cells, and APB + TTX and PDA + TTX cocktails.
View Article and Find Full Text PDF