Rapid spread of insecticide resistance among anopheline mosquitoes threatens malaria elimination efforts, necessitating development of alternative vector control technologies. Sterile insect technique (SIT) has been successfully implemented in multiple insect pests to suppress field populations by the release of large numbers of sterile males, yet it has proven difficult to adapt to Anopheles vectors. Here we outline adaptation of a CRISPR-based genetic sterilization system to selectively ablate male sperm cells in the malaria mosquito Anopheles gambiae.
View Article and Find Full Text PDFRapid spread of insecticide resistance among anopheline mosquitoes threatens malaria elimination efforts, necessitating development of alternative vector control technologies. Sterile Insect Technique (SIT) has been successfully implemented in multiple insect pests to suppress field populations by the release of large numbers of sterile males, yet it has proven difficult to adapt to vectors. Here we outline adaptation of a CRISPR-based genetic sterilization system to selectively ablate male sperm cells in the malaria mosquito .
View Article and Find Full Text PDFThe ability to identify the designer of engineered biological sequences-termed genetic engineering attribution (GEA)-would help ensure due credit for biotechnological innovation, while holding designers accountable to the communities they affect. Here, we present the results of the first Genetic Engineering Attribution Challenge, a public data-science competition to advance GEA techniques. Top-scoring teams dramatically outperformed previous models at identifying the true lab-of-origin of engineered plasmid sequences, including an increase in top-1 and top-10 accuracy of 10 percentage points.
View Article and Find Full Text PDFThe world's biodiversity is in crisis. Synthetic biology has the potential to transform biodiversity conservation, both directly and indirectly, in ways that are negative and positive. However, applying these biotechnology tools to environmental questions is fraught with uncertainty and could harm cultures, rights, livelihoods, and nature.
View Article and Find Full Text PDFTranslation using four-base codons occurs in both natural and synthetic systems. What constraints contributed to the universal adoption of a triplet codon, rather than quadruplet codon, genetic code? Here, we investigate the tolerance of the genetic code to tRNA mutations that increase codon size. We found that tRNAs from all 20 canonical isoacceptor classes can be converted to functional quadruplet tRNAs (qtRNAs).
View Article and Find Full Text PDFOptimizing viral vectors and their properties will be important for improving the effectiveness and safety of clinical gene therapy. However, such research may generate dual-use insights relevant to the enhancement of pandemic pathogens. In particular, reliable and generalizable methods of immune evasion could increase viral fitness sufficient to cause a new pandemic.
View Article and Find Full Text PDFEvolution occurs when selective pressures from the environment shape inherited variation over time. Within the laboratory, evolution is commonly used to engineer proteins and RNA, but experimental constraints have limited the ability to reproducibly and reliably explore factors such as population diversity, the timing of environmental changes and chance on outcomes. We developed a robotic system termed phage- and robotics-assisted near-continuous evolution (PRANCE) to comprehensively explore biomolecular evolution by performing phage-assisted continuous evolution in high-throughput.
View Article and Find Full Text PDFProtein engineering has enormous academic and industrial potential. However, it is limited by the lack of experimental assays that are consistent with the design goal and sufficiently high throughput to find rare, enhanced variants. Here we introduce a machine learning-guided paradigm that can use as few as 24 functionally assayed mutant sequences to build an accurate virtual fitness landscape and screen ten million sequences via in silico directed evolution.
View Article and Find Full Text PDFOur understanding of complex living systems is limited by our capacity to perform experiments in high throughput. While robotic systems have automated many traditional hand-pipetting protocols, software limitations have precluded more advanced maneuvers required to manipulate, maintain, and monitor hundreds of experiments in parallel. Here, we present Pyhamilton, an open-source Python platform that can execute complex pipetting patterns required for custom high-throughput experiments such as the simulation of metapopulation dynamics.
View Article and Find Full Text PDFContact tracing is critical to controlling COVID-19, but most protocols only "forward-trace" to notify people who were recently exposed. Using a stochastic branching-process model, we find that "bidirectional" tracing to identify infector individuals and their other infectees robustly improves outbreak control. In our model, bidirectional tracing more than doubles the reduction in effective reproduction number (R) achieved by forward-tracing alone, while dramatically increasing resilience to low case ascertainment and test sensitivity.
View Article and Find Full Text PDFBiology can be misused, and the risk of this causing widespread harm increases in step with the rapid march of technological progress. A key security challenge involves attribution: determining, in the wake of a human-caused biological event, who was responsible. Recent scientific developments have demonstrated a capability for detecting whether an organism involved in such an event has been genetically modified and, if modified, to infer from its genetic sequence its likely lab of origin.
View Article and Find Full Text PDFThe promise of biotechnology is tempered by its potential for accidental or deliberate misuse. Reliably identifying telltale signatures characteristic to different genetic designers, termed 'genetic engineering attribution', would deter misuse, yet is still considered unsolved. Here, we show that recurrent neural networks trained on DNA motifs and basic phenotype data can reach 70% attribution accuracy in distinguishing between over 1,300 labs.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2019
If they are able to spread in wild populations, CRISPR-based gene-drive elements would provide new ways to address ecological problems by altering the traits of wild organisms, but the potential for uncontrolled spread tremendously complicates ethical development and use. Here, we detail a self-exhausting form of CRISPR-based drive system comprising genetic elements arranged in a daisy chain such that each drives the next. "Daisy-drive" systems can locally duplicate any effect achievable by using an equivalent self-propagating drive system, but their capacity to spread is limited by the successive loss of nondriving elements from one end of the chain.
View Article and Find Full Text PDFMice Against Ticks is a community-guided ecological engineering project that aims to prevent tick-borne disease by using CRISPR-based genome editing to heritably immunize the white-footed mice ( Peromyscus leucopus) responsible for infecting many ticks in eastern North America. Introducing antibody-encoding resistance alleles into the local mouse population is anticipated to disrupt the disease transmission cycle for decades. Technology development is shaped by engagement with community members and visitors to the islands of Nantucket and Martha's Vineyard, including decisions at project inception about which types of disease resistance to pursue.
View Article and Find Full Text PDFThe recent de novo assembly of horsepox is an instructive example of an information hazard: published methods enabling poxvirus synthesis led to media coverage spelling out the implications, efficiently disseminating true information that might be used to cause harm. Whether or not the benefits justified the risks, the horsepox saga provides ample reason to upgrade the current system for screening synthesized DNA for hazardous sequences, which does not cover the majority of firms and cannot reliably prevent the assembly of potentially pandemic pathogens. An upgraded system might leverage one-way encryption to confidentially scrutinize virtually all commercial production by a cooperative international network of servers whose integrity can be verified by third parties.
View Article and Find Full Text PDFRecent reports have suggested that self-propagating CRISPR-based gene drive systems are unlikely to efficiently invade wild populations due to drive-resistant alleles that prevent cutting. Here we develop mathematical models based on existing empirical data to explicitly test this assumption for population alteration drives. Our models show that although resistance prevents spread to fixation in large populations, even the least effective drive systems reported to date are likely to be highly invasive.
View Article and Find Full Text PDFThe prospect of using genetic methods to target vector, parasite, and reservoir species offers tremendous potential benefits to public health, but the use of genome editing to alter the shared environment will require special attention to public perception and community governance in order to benefit the world. Public skepticism combined with the media scrutiny of gene drive systems could easily derail unpopular projects entirely, especially given the potential for trade barriers to be raised against countries that employ self-propagating gene drives. Hence, open and community-guided development of thoughtfully chosen applications is not only the most ethical approach, but also the most likely to overcome the economic, social, and diplomatic barriers.
View Article and Find Full Text PDFInterest in developing gene drive systems to control invasive species is growing, with New Zealand reportedly considering the nascent technology as a way to locally eliminate the mammalian pests that threaten its unique flora and fauna. If gene drives successfully eradicated these invasive populations, many would rejoice, but what are the possible consequences? Here, we explore the risk of accidental spread posed by self-propagating gene drive technologies, highlight new gene drive designs that might achieve better outcomes, and explain why we need open and international discussions concerning a technology that could have global ramifications.
View Article and Find Full Text PDFThe alteration of wild populations has been discussed as a solution to a number of humanity's most pressing ecological and public health concerns. Enabled by the recent revolution in genome editing, clustered regularly interspaced short palindromic repeats (CRISPR) gene drives-selfish genetic elements that can spread through populations even if they confer no advantage to their host organism-are rapidly emerging as the most promising approach. However, before real-world applications are considered, it is imperative to develop a clear understanding of the outcomes of drive release in nature.
View Article and Find Full Text PDF