Publications by authors named "Kevin M Dorst"

Understanding the structure of Ru(V)-oxo species is crucial for designing novel catalysts for sustainable energy applications, such as water splitting for green hydrogen production. This study reports the EPR detection of a Ru(V)-oxo intermediate stabilized by terpyridine and phenanthroline carboxylate ligands. The interaction between the carboxylate group and the ruthenium center, along with PCET-dependent hemilability under oxidative conditions, plays a critical role in achieving the high-valent state.

View Article and Find Full Text PDF

Carbohydrates, vital components of biological systems, are well-known for their structural diversity. Nuclear Magnetic Resonance (NMR) spectroscopy plays a crucial role in understanding their intricate molecular arrangements and is essential in assessing and verifying the molecular structure of organic molecules. An important part of this process is to predict the NMR chemical shift from the molecular structure.

View Article and Find Full Text PDF

Methodology development in carbohydrate chemistry entails the stereoselective formation of C-O bonds as a key step in the synthesis of oligo- and polysaccharides. The anomeric selectivity of a glycosylation reaction is affected by a multitude of parameters, such as the nature of the donor and acceptor, activator/promotor system, temperature and solvent. The influence of different solvents on the stereoselective outcome of glycosylation reactions employing thioglucopyranosides as glycosyl donors with a non-participating protecting group at position 2 has been studied.

View Article and Find Full Text PDF

Glycans are central to information content and regulation in biological systems. These carbohydrate molecules are active either as oligo- or polysaccharides, often in the form of glycoconjugates. The monosaccharide entities are joined by glycosidic linkages and stereochemical arrangements are of utmost importance in determining conformation and flexibility of saccharides.

View Article and Find Full Text PDF

Carbohydrate structures containing alkyl groups as aglycones are useful for investigating enzyme activity and glycan-protein interactions. Moreover, linker-containing oligosaccharides with a spacer group are commonly used to print glycan microarrays or to prepare protein-conjugates as vaccine candidates. The structural accuracy of these synthesized glycans are essential for interpretation of results from biological experiments in which the compounds have been used and NMR spectroscopy can unravel and confirm their structures.

View Article and Find Full Text PDF

Dioxygenases catalyze stereoselective oxygen atom transfer in metabolic pathways of biological, industrial, and pharmaceutical importance, but their precise chemical principles remain controversial. The α-ketoglutarate (αKG)-dependent dioxygenase AsqJ synthesizes biomedically active quinolone alkaloids via desaturation and subsequent epoxidation of a carbon-carbon bond in the cyclopeptin substrate. Here, we combine high-resolution X-ray crystallography with enzyme engineering, quantum-classical (QM/MM) simulations, and biochemical assays to describe a peroxidic intermediate that bridges the substrate and active site metal ion in AsqJ.

View Article and Find Full Text PDF