Publications by authors named "Kevin M Barraza"

The oxidation of antioxidants by oxidizers imposes great challenges to both living organisms and the food industry. Here we show that the host-guest complexation of the carefully designed, positively charged, amphiphilic guanidinocalix[5]arene pentadodecyl ether (GC5A-12C) and negatively charged oleic acid (OA), a well-known cell membrane antioxidant, prevents the oxidation of the complex monolayers at the air-water interface from two potent oxidizers hydroxyl radicals (OH) and singlet delta oxygen (SDO). OH is generated from the gas phase and attacks from the top of the monolayer, while SDO is generated inside the monolayer and attacks amphiphiles from a lateral direction.

View Article and Find Full Text PDF

Even though the general mechanism of photodynamic cancer therapy is known, the details and consequences of the reactions between the photosensitizer-generated singlet oxygen and substrate molecules remain elusive at the molecular level. Using temoporfin as the photosensitizer, here we combine field-induced droplet ionization mass spectrometry and acoustic levitation techniques to study the "wall-less" oxidation reactions of 18:1 cardiolipin and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG) mediated by singlet oxygen at the air-water interface of levitated water droplets. For both cardiolipin and POPG, every unsaturated oleyl chain is oxidized to an allyl hydroperoxide, which surprisingly is immune to further oxidation.

View Article and Find Full Text PDF

Nature carefully designs the components of amphiphile-composed monolayer and bilayer membranes to deliver specific functions. The compositions of these interfacial layered structures are so delicate that minute modifications can result in huge changes in function. Great effort has been expended to understand membrane physical properties, with only minimum attention given to associated chemical properties.

View Article and Find Full Text PDF

Gas and aqueous phases are essential media for atmospheric chemistry and aerosol formation. Numerous studies have focused on aqueous-phase reactions as well as coupled gas/aqueous-phase mass transport and reaction. Few studies have directly addressed processes occurring at the air-water interface, especially involving surface-active compounds.

View Article and Find Full Text PDF

The role of cholesterol in bilayer and monolayer lipid membranes has been of great interest. On the biophysical front, cholesterol significantly increases the order of the lipid packing, lowers the membrane permeability, and maintains membrane fluidity by forming liquid-ordered-phase lipid rafts. However, direct observation of any influence on membrane chemistry related to these cholesterol-induced physical properties has been absent.

View Article and Find Full Text PDF