Publications by authors named "Kevin M Arnold"

Rtt109 is a yeast histone acetyltransferase (HAT) that associates with histone chaperones Asf1 and Vps75 to acetylate H3K56, H3K9, and H3K27 and is important in DNA replication and maintaining genomic integrity. Recently, mass spectrometry and structural studies of Rtt109 have shown that active site residue Lys-290 is acetylated. However, the functional role of this modification and how the acetyl group is added to Lys-290 was unclear.

View Article and Find Full Text PDF

Post-translational modifications of histones elicit structural and functional changes within chromatin that regulate various epigenetic processes. Epigenetic mechanisms rely on enzymes whose activities are driven by coenzymes and metabolites from intermediary metabolism. Lysine acetyltransferases (KATs) catalyze the transfer of acetyl groups from acetyl-CoA to epsilon amino groups.

View Article and Find Full Text PDF

Esa1, an essential MYST histone acetyltransferase found in the yeast piccolo NuA4 complex (picNuA4), is responsible for genome-wide histone H4 and histone H2A acetylation. picNuA4 uniquely catalyzes the rapid tetra-acetylation of nucleosomal H4, though the molecular determinants driving picNuA4 efficiency and specificity have not been defined. Here, we show through rapid substrate trapping experiments that picNuA4 utilizes a nonprocessive mechanism in which picNuA4 dissociates from the substrate after each acetylation event.

View Article and Find Full Text PDF

Most histone acetyltransferases (HATs) function as multisubunit complexes in which accessory proteins regulate substrate specificity and catalytic efficiency. Rtt109 is a particularly interesting example of a HAT whose specificity and catalytic activity require association with either of two histone chaperones, Vps75 or Asf1. Here, we utilize biochemical, structural, and genetic analyses to provide the detailed molecular mechanism for activation of a HAT (Rtt109) by its activating subunit Vps75.

View Article and Find Full Text PDF

Although transmissible spongiform encephalopathies (TSEs) are incurable, a key therapeutic approach is prevention of conversion of the normal, protease-sensitive form of prion protein (PrP-sen) to the disease-specific protease-resistant form of prion protein (PrP-res). Here degenerate phosphorothioate oligonucleotides (PS-ONs) are introduced as low-nM PrP-res conversion inhibitors with strong antiscrapie activities in vivo. Comparisons of various PS-ON analogs indicated that hydrophobicity and size were important, while base composition was only minimally influential.

View Article and Find Full Text PDF

A central feature of transmissible spongiform encephalopathies (TSE or prion diseases) involves the conversion of a normal, protease-sensitive glycoprotein termed prion protein (PrP-sen) into a pro-tease-resistant form, termed PrP-res. The N terminus of PrP-sen has five copies of a repeating eight amino acid sequence (octapeptide repeat). The presence of one to nine extra copies of this motif is associated with a heritable form of Creutzfeld-Jakob disease (CJD) in humans.

View Article and Find Full Text PDF
Article Synopsis
  • Transmissible spongiform encephalopathies (TSEs) are deadly brain diseases linked to a resistant form of prion protein called PrP(Sc) or PrP-res, with efforts focused on finding effective inhibitors.
  • Researchers have discovered 32 new inhibitors targeting two strains of mouse scrapie PrP-res and created a cell culture assay to test these on sheep scrapie.
  • Out of the tested inhibitors, only six were effective against both mouse and sheep prion proteins, with tannic acid, pentosan polysulfate, and Fe(III) deuteroporphyrin 2,4-bisethyleneglycol showing the most promise at low concentrations.
View Article and Find Full Text PDF