Publications by authors named "Kevin Liaw"

Oncogenic forms of HPV account for 4.5% of the global cancer burden worldwide. This includes cervical, vaginal, vulvar, penile, and anal cancers, as well as head and neck cancers.

View Article and Find Full Text PDF
Article Synopsis
  • Glioblastoma multiforme (GBM) presents a challenge for treatment due to its antigenic variability, prompting researchers to develop multivalent immunotherapies that target multiple tumor antigens to improve effectiveness.
  • The study introduces a new class of antibodies called DNA-encoded tri-specific T-cell engagers (DTriTEs) that target two specific GBM antigens and engage T cells, showing promising in vitro and in vivo results.
  • The leading DTriTE construct, DT2035, not only significantly reduced tumor burden and improved survival rates in mouse models but also showed sustained expression and induced strong immune responses, making it a potential game-changer for GBM treatment.
View Article and Find Full Text PDF

Background: Advanced clear cell renal cell carcinoma (ccRCC) is a prevalent kidney cancer for which long-term survival rates are abysmal, though immunotherapies are showing potential. Not yet clinically vetted are bispecific T cell engagers (BTEs) that activate T cell-mediated cancer killing through intercellular synapsing. Multiple BTE formats exist, however, with limited cross-characterizations to help optimize new drug design.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is among the most difficult cancers to treat with a 5-year survival rate less than 5%. An immunotherapeutic vaccine approach targeting GBM-specific antigen, EGFRvIII, previously demonstrated important clinical impact. However, immune escape variants were reported in the trial, suggesting that multivalent approaches targeting GBM-associated antigens may be of importance.

View Article and Find Full Text PDF

Cancer immunotherapy has demonstrated great promise with several checkpoint inhibitors being approved as the first-line therapy for some types of cancer, and new engineered cytokines such as Neo2/15 now being evaluated in many studies. In this work, we designed antibody-cytokine chimera (ACC) scaffolding cytokine mimetics on a full-length tumor-specific antibody. We characterized the pharmacokinetic (PK) and pharmacodynamic (PD) properties of first-generation ACC TA99-Neo2/15, which synergized with DLnano-vaccines to suppress melanoma proliferation and induced significant systemic cytokine activation.

View Article and Find Full Text PDF

Despite advances in ovarian cancer (OC) therapy, recurrent OC remains a poor-prognosis disease. Because of the close interaction between OC cells and the tumor microenvironment (TME), it is important to develop strategies that target tumor cells and engage components of the TME. A major obstacle in the development of OC therapies is the identification of targets with expression limited to tumor surface to avoid off-target interactions.

View Article and Find Full Text PDF

Glioblastoma is an aggressive tumor with poor survival rates. Bispecific T cell engagers (BTEs) against different cancers are in various stages of clinical development. Toxicity resulting from cytokine release syndrome and the short half-life of BTEs, which necessitates continuous infusion, complicating delivery and increasing costs, are major challenges in the field.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines may target epitopes that reduce durability or increase the potential for escape from vaccine-induced immunity. Using synthetic vaccinology, we have developed rationally immune-focused SARS-CoV-2 Spike-based vaccines. Glycans can be employed to alter antibody responses to infection and vaccines.

View Article and Find Full Text PDF
Article Synopsis
  • The study assesses the safety and immune response durability of the DNA vaccine INO-4800 against COVID-19, which is crucial as new vaccines are needed urgently.
  • Conducted on 120 healthy adults, the trial tested three dosage strengths (0.5 mg, 1.0 mg, and 2.0 mg) and showed that INO-4800 was well tolerated, with mostly mild side effects and no serious adverse events.
  • The vaccine generated a strong antibody response that lasted for at least 6 months, and increased immune responses were noted after a booster dose, particularly at the highest dosage, supporting further development of INO-4800 for vaccination against COVID-19.
View Article and Find Full Text PDF

Latent Epstein-Barr virus (EBV) infection is associated with several types of cancer. Several clinical studies have targeted EBV antigens as immune therapeutic targets with limited efficacy of EBV malignancies, suggesting that additional targets might be important. HI-A rightward frame 1 (BARF1) is an EBV antigen that is highly expressed in EBV nasopharyngeal carcinoma (NPC) and EBV-associated gastric carcinoma (EBVaGC).

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease where muscle weakness and neuromuscular junction (NMJ) denervation precede motor neuron cell death. Although acetylcholine is the canonical neurotransmitter at the mammalian NMJ synapse, glutamate has recently been identified as a critical neurotransmitter for NMJ development and maintenance. One source of glutamate is through the catabolism of N-acetyl-aspartyl-glutamate (NAAG), which is found in mM concentrations in mammalian motoneurons, where it is released upon stimulation and hydrolyzed to glutamate by the glial enzyme glutamate carboxypeptidase II (GCPII).

View Article and Find Full Text PDF

Cognitive impairment is a common aspect of multiple sclerosis (MS) for which there are no treatments. Reduced brain -acetylaspartylglutamate (NAAG) levels are linked to impaired cognition in various neurological diseases, including MS. NAAG levels are regulated by glutamate carboxypeptidase II (GCPII), which hydrolyzes the neuropeptide to -acetyl-aspartate and glutamate.

View Article and Find Full Text PDF

Effective treatment of glioblastoma remains a daunting challenge. One of the major hurdles in the development of therapeutics is their inability to cross the blood-brain tumor barrier (BBTB). Local delivery is an alternative approach that can still suffer from toxicity in the absence of target selectivity.

View Article and Find Full Text PDF

Glioblastoma is among the most aggressive forms of cancers, with a median survival of just 15-20 months for patients despite maximum clinical intervention. The majority of conventional anti-cancer therapies fail due to associated off-site toxicities which can be addressed by developing target-specific drug delivery systems. Advances in nanotechnology have provided targeted systems to overcome drug delivery barriers associated with brain and other types of cancers.

View Article and Find Full Text PDF

More than 100 million people have been infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Common laboratory mice are not susceptible to wild-type SARS-CoV-2 infection, challenging the development and testing of effective interventions. Here, we describe the development and testing of a mouse model for SARS-CoV-2 infection based on transduction of the respiratory tract of laboratory mice with an adeno-associated virus vector () expressing human ACE-2 ().

View Article and Find Full Text PDF

Glioblastoma is the most common and aggressive form of primary brain cancer, with median survival of 16-20 months and a 5-year survival rates of <5%. Recent advances in immunotherapies have shown that addressing the tumor immune profile by targeting the colony-stimulating factor 1 (CSF-1) signaling pathway of tumor-associated macrophages (TAMs) has the potential to improve glioblastoma therapy. However, such therapies have shown limited successes in clinical translation partially due to lack of specific cell targeting in solid tumors and systemic toxicity.

View Article and Find Full Text PDF

Switching microglia from a disease exacerbating, 'pro-inflammatory' state into a neuroprotective, 'anti-inflammatory' phenotype is a promising strategy for addressing multiple neurodegenerative diseases. Pro-inflammatory microglia contribute to disease progression by releasing neurotoxic substances and accelerating pathogenic protein accumulation. PPARα and PPARγ agonists have both been shown to shift microglia from a pro-inflammatory ('M1-like') to an alternatively activated ('M2-like') phenotype.

View Article and Find Full Text PDF

Novel delivery strategies are necessary to effectively address glioblastoma without systemic toxicities. Triptolide is a therapy derived from the thunder god vine that has shown potent anti-proliferative and immunosuppressive properties but exhibits significant adverse systemic effects. Dendrimer-based nanomedicines have shown great potential for clinical translation of systemic therapies targeting neuroinflammation and brain tumors.

View Article and Find Full Text PDF

Glioblastoma exhibits high mortality rates due to challenges with drug delivery to the brain and into solid tumors. This two-pronged barrier necessitates high doses of systemic therapies, resulting in significant off-target toxicities. Recently, dendrimer-nanomedicines (without ligands) have shown promise for targeting specific cells in brain tumors from systemic circulation, for improved efficacy and amelioration of systemic toxicities.

View Article and Find Full Text PDF

Mitochondria mediate critical cellular processes, including proliferation, apoptosis, and immune responses; as such, their dysfunction is pathogenic in many neurodegenerative disorders and cancers. In glioblastoma, targeted delivery of mitochondria-focused anticancer therapies has failed to translate into clinical success due to the nonspecific cellular localization, heterogeneity of receptor expression across patients, poor transport across biological barriers to reach the brain, tumor, and mitochondria, and systemic side effects. Strategies that can overcome brain and solid tumor barriers and selectively target mitochondria within specific cell types may lead to improvements in glioblastoma treatment.

View Article and Find Full Text PDF

Background: Given the emergent aging population, the identification of effective treatments for Alzheimer's disease (AD) is critical.

Objective: We investigated the therapeutic efficacy of JHU-083, a brain-penetrable glutamine antagonist, in treating AD using the humanized APOE4 knock-in mouse model.

Methods: Cell culture studies were performed using BV2 cells and primary microglia isolated from hippocampi of adult APOE4 knock-in mice to evaluate the effect of JHU-083 treatment on LPS-induced glutaminase (GLS) activity and inflammatory markers.

View Article and Find Full Text PDF

Malignant gliomas are the most common and aggressive form of primary brain tumors, with a median survival of 15-20 months for patients receiving maximal interventions. Advances in nanomedicine have provided tumor-specific delivery of chemotherapeutics to potentially overcome their off-target toxicities. Recent advances in dendrimer-based nanomedicines have established that hydroxyl-terminated poly(amidoamine) dendrimers can intrinsically target neuroinflammation and brain tumors from systemic administration without the need for targeting moieties.

View Article and Find Full Text PDF

Poor transport of neuropharmaceutics through central nervous system (CNS) barriers limits the development of effective treatments for CNS disorders. We present the facile synthesis of a novel neuroinflammation-targeting polyethylene glycol-based dendrimer (PEGOL-60) using an efficient click chemistry approach. PEGOL-60 reduces synthetic burden by achieving high hydroxyl surface density at low generation, which plays a key role in brain penetration and glia targeting of dendrimers in CNS disorders.

View Article and Find Full Text PDF

Identifying and harnessing regenerative pathways while suppressing the growth-inhibiting processes of the biological response to injury is the central goal of stimulating neurogenesis after central nervous system (CNS) injury. However, due to the complexity of the mature CNS involving a plethora of cellular pathways and extracellular cues, as well as difficulties in accessibility without highly invasive procedures, clinical successes of regenerative medicine for CNS injuries have been extremely limited. Current interventions primarily focus on stabilization and mitigation of further neuronal death rather than direct stimulation of neurogenesis.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session4gr2jthtvd13qmbvjk6uvpmb0htj1osm): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once