Quantifying physical activity and estimating the metabolic equivalent of tasks based on inertial measurement units has led to the emergence of multiple methods and data reduction approaches known as physical activity metrics. The present study aims to compare those metrics and reduction approaches based on descriptive and high order statistics. Data were obtained from 147 young healthy subjects wearing inertial measurement units at their wrist or ankle during standing, walking and running, labeled as light, medium or vigorous activities.
View Article and Find Full Text PDFBackground: Sit-to-stand is used as a qualitative test to evaluate functional performance, especially to detect fall risks and frail individuals. The use of various quantitative criteria would enable a better understanding of musculoskeletal deficits and movement strategy modifications. This quantification was proven possible with a magneto-inertial unit which provides a compatible wearable device for clinical routine motion analysis.
View Article and Find Full Text PDFSit-to-stand tests are used in geriatrics as a qualitative issue in order to evaluate motor control and stability. In terms of measured indicators, it is traditionally the duration of the task that is reported, however it appears that the use of the kinetic energy as a new quantitative criterion allows getting a better understanding of musculoskeletal deficits of elderly subjects. The aim of this study was to determine the feasibility to obtain the measure of kinetic energy using magneto-inertial measurement units (MIMU) during sit-to-stand movements at various paces.
View Article and Find Full Text PDF