Chronic non-healing wounds persist as a substantial burden for healthcare systems, influenced by factors such as aging, diabetes, and obesity. In contrast to the traditionally pro-regenerative emphasis of therapies, the recognition of the immune system integral role in wound healing has significantly grown, instigating an approach shift towards immunological processes. Thus, this review explores the wound healing process, highlighting the engagement of the immune system, and delving into the behaviors of innate and adaptive immune cells in chronic wound scenarios.
View Article and Find Full Text PDFThe extracellular matrix in microenvironments harbors a variety of signals to control cellular functions and the materiality of tissues. Most efforts to synthetically reconstitute the matrix by biomaterial design have focused on decoupling cell-secreted and polymer-based cues. Cells package molecules into nanoscale lipid membrane-bound extracellular vesicles and secrete them.
View Article and Find Full Text PDFChronic wounds are a worldwide problem that affect >40 million people every year. The constant inflammatory status accompanied by prolonged bacterial infections reduce patient's quality of life and life expectancy drastically. An important cell type involved in the wound healing process are mesenchymal stromal cells (MSCs) due to their long-term demonstrated immunomodulatory and pro-regenerative capacity.
View Article and Find Full Text PDFThe field of regenerative medicine has undergone a paradigm shift in recent decades thanks to the emergence of novel therapies based on the use of living organisms. The development of cell-based strategies has become a trend for the treatment of different conditions and pathologies. In this sense, the need for more adequate, biomimetic and well-planned treatments for chronic wounds has found different and innovative strategies, based on the combination of cells with dressings, which seek to revolutionize the wound healing management.
View Article and Find Full Text PDFEpistaxis is one of the most common otorhinolaryngology emergencies worldwide. Although there are currently several treatments available, they present several disadvantages. This, in addition to the increasing social need of being environmentally respectful, led us to investigate whether a sponge-like scaffold (SP-CH) produced from natural by-products of the food industry - soy protein and β-chitin - can be employed as a nasal pack for the treatment of epistaxis.
View Article and Find Full Text PDFBackground: Mesenchymal stromal cells (MSCs) and their extracellular vesicles (MSC-EVs) have demonstrated to elicit immunomodulatory and pro-regenerative properties that are beneficial for the treatment of chronic wounds. Thanks to different mediators, MSC-EVs have shown to play an important role in the proliferation, migration and cell survival of different skin cell populations. However, there is still a big bid to achieve the most effective, suitable and available source of MSC-EVs.
View Article and Find Full Text PDFIn the past decades, adequate and well-planned management of chronic wounds has reached an elevated importance to improve human's quality of life and extend life expectancy. The need for more complex and biomimetic strategies has fueled the exploration of numerous emerging technologies. However, the development of new therapies requires an extensive knowledge of the wound healing process and the key players involved in it.
View Article and Find Full Text PDFChitosan/collagen films were developed and characterized in order to assess the suitability of these films for biomedical applications. Hence, physicochemical, thermal, barrier and mechanical properties were analyzed and related to the film structure, which showed the prevalence of the triple helix of native collagen after the addition of chitosan. Furthermore, collagen fiber diameter changed from 3.
View Article and Find Full Text PDF