Publications by authors named "Kevin L Shimkus"

Article Synopsis
  • Prolonged spaceflight can lead to muscle atrophy, and partial gravity similar to the Moon's surface may worsen this, especially when combined with space radiation exposure.
  • A study was conducted on mice to investigate the effects of partial weight-bearing (simulating Lunar gravity) and radiation on muscle mass and protein synthesis.
  • Results showed that partial weight-bearing decreased muscle mass but radiation exposure did not further impact muscle mass, although some changes in protein synthesis and muscle fiber types were observed.
View Article and Find Full Text PDF
Article Synopsis
  • - Skeletal muscle atrophy can occur due to disease, aging, or lack of use, and hindlimb unloading (HU) in mice serves as a model to study this process over time.
  • - In this study, mice subjected to HU showed muscle atrophy within 120 hours, with a notable decrease in protein synthesis and increased biomarkers indicating a catabolic state, particularly after 120 hours of unloading.
  • - After reloading following a period of HU, certain biomarkers related to protein synthesis improved, but the capacity for refeeding to stimulate muscle growth was diminished, highlighting the negative impact of disuse on muscle function.
View Article and Find Full Text PDF

Muscle disuse impairs muscle quality and is associated with increased mortality. Little is known regarding additive effects of multiple bouts of disuse, which is a common occurrence in patients experiencing multiple surgeries. Mitochondrial quality is vital to muscle health and quality; however, to date mitochondrial quality control has not been investigated following multiple bouts of disuse.

View Article and Find Full Text PDF

Previous studies established that leucine stimulates protein synthesis in skeletal muscle to the same extent as a complete mixture of amino acids, and the effect occurs through activation of the mechanistic target of rapamycin in complex 1 (mTORC1). Recent studies using cells in culture showed that the Sestrins bind leucine and are required for leucine-dependent activation of mTORC1. However, the role they play in mediating leucine-dependent activation of the kinase in vivo has been questioned because the dissociation constant of Sestrin2 for leucine is well below circulating and intramuscular levels of the amino acid.

View Article and Find Full Text PDF

We recently reported results showing that cast immobilization of a rat hindlimb rapidly leads to development of anabolic resistance as demonstrated by failure of oral leucine administration to activate the mechanistic target of rapamycin complex 1 (mTORC1) and stimulate protein synthesis in the soleus muscle. The goal of this study was to assess the possible contribution of several mTORC1 regulatory proteins to the development of anabolic resistance. To accomplish this, 14-week-old male C57BL/6 mice (n = 21) were subjected to unilateral cast immobilization of the hindlimb for either 1 or 3 days, and the immobilized limb was compared to its contralateral control.

View Article and Find Full Text PDF

Mechanical unloading has long been understood to contribute to rapid and substantial adaptations within skeletal muscle, most notably, muscle atrophy. Studies have often demonstrated that many of the alterations resulting from disuse are reversed with a reintroduction of load and have supported the concept of muscle plasticity. We hypothesized that adaptations during disuse and recovery were a repeatable/reproducible phenomenon, which we tested with repeated changes in mechanical load.

View Article and Find Full Text PDF

When compared to placebo, acetaminophen (APAP) reduces tendon stiffness and collagen cross-linking. APAP also enhances the exercise-induced increase in peritendinous levels of IL-6. Elevated levels of IL-6 are associated with tendinopathy, thus we hypothesized that chronic, elevated peritendinous IL-6 would alter tendon extracellular matrix (ECM).

View Article and Find Full Text PDF

Mechanical ventilation (MV) is a life-saving intervention in patients in respiratory failure. Unfortunately, prolonged MV results in the rapid development of diaphragm atrophy and weakness. MV-induced diaphragmatic weakness is significant because inspiratory muscle dysfunction is a risk factor for problematic weaning from MV.

View Article and Find Full Text PDF

Aquatic treadmill (ATM) running may simultaneously promote aerobic fitness and enhance muscle growth when combined with resistance training (RT) compared with land-treadmill (LTM) running. Therefore, we examined acute and chronic physiological responses to RT, concurrent RT-LTM, and concurrent RT-ATM. Forty-seven untrained volunteers (men: n = 23, 37 ± 11 yr, 29.

View Article and Find Full Text PDF

Previously, we demonstrated that high-volume resistance exercise stimulates mitochondrial protein synthesis (a measure of mitochondrial biogenesis) in lean but not obese Zucker rats. Here, we examined factors involved in regulating mitochondrial biogenesis in the same animals. PGC-1α was 45% higher following exercise in obese but not lean animals compared with sedentary counterparts.

View Article and Find Full Text PDF

Obesity may impair protein synthesis rates and cause anabolic resistance to growth factors, hormones, and exercise, ultimately affecting skeletal muscle mass and function. To better understand muscle wasting and anabolic resistance with obesity, we assessed protein 24-h fractional synthesis rates (24-h FSRs) in selected hind-limb muscles of sedentary and resistance-exercised lean and obese Zucker rats. Despite atrophied hind-limb muscles (-28% vs.

View Article and Find Full Text PDF

Metabolic risk factors associated with insulin resistance syndrome may attenuate augmentations in skeletal muscle protein anabolism following contractile activity. The purpose of this study was to investigate whether or not the anabolic response, as defined by an increase in cumulative fractional protein synthesis rates (24-h FSR) following resistance exercise (RE), is blunted in skeletal muscle of a well-established rodent model of insulin resistance syndrome. Four-month-old lean (Fa/?) and obese (fa/fa) Zucker rats engaged in four lower body RE sessions over 8 days, with the last bout occurring 16 h prior to muscle harvest.

View Article and Find Full Text PDF