Publications by authors named "Kevin L Hua"

HIV-1 entry can be inhibited by soluble peptides from the gp41 heptad repeat-2 (HR2) domain that interfere with formation of the 6-helix bundle during fusion. Inhibition has also been seen when these peptides are conjugated to anchoring molecules and over-expressed on the cell surface. We hypothesized that potent anti-HIV activity could be achieved if a 34 amino acid peptide from HR2 (C34) were brought to the site of virus-cell interactions by conjugation to the amino termini of HIV-1 coreceptors CCR5 or CXCR4.

View Article and Find Full Text PDF

Zinc-finger nucleases (ZFNs) drive highly efficient genome editing by generating a site-specific DNA double-strand break (DSB) at a predetermined site in the genome. Subsequent repair of this break via the nonhomologous end-joining (NHEJ) or homology-directed repair (HDR) pathways results in targeted gene disruption or gene addition, respectively. Here, we report that ZFNs can be engineered to induce a site-specific DNA single-strand break (SSB) or nick.

View Article and Find Full Text PDF

HIV-1-infected individuals can harbor viral isolates that can use CCR5, as well as CXCR4, for viral entry. To genetically engineer HIV-1 resistance in CD4(+) T cells, we assessed whether transient, adenovirus delivered zinc-finger nuclease (ZFN) disruption of genomic cxcr4 or stable lentiviral expression of short hairpin RNAs (shRNAs) targeting CXCR4 mRNAs provides durable resistance to HIV-1 challenge. ZFN-modification of cxcr4 in CD4(+) T cells was found to be superior to cell integrated lentivirus-expressing CXCR4 targeting shRNAs when CD4(+) T cells were challenged with HIV-1s that utilizes CXCR4 for entry.

View Article and Find Full Text PDF

Nucleases that cleave unique genomic sequences in living cells can be used for targeted gene editing and mutagenesis. Here we develop a strategy for generating such reagents based on transcription activator-like effector (TALE) proteins from Xanthomonas. We identify TALE truncation variants that efficiently cleave DNA when linked to the catalytic domain of FokI and use these nucleases to generate discrete edits or small deletions within endogenous human NTF3 and CCR5 genes at efficiencies of up to 25%.

View Article and Find Full Text PDF