Photolytic optical gating (POG) facilitates rapid, on-line and highly sensitive analyses, though POG utilizes UV lasers for sample injection. We present a low-cost, more portable alternative, employing an ultraviolet light-emitting diode (UV-LED) array to inject caged fluorescent dyes via photolysis. Utilizing the UV-LED array, labeled amino acids were injected with nanomolar limits of detection (270 ± 30 nM and 250 ± 30 nM for arginine and citrulline, respectively).
View Article and Find Full Text PDFHere, we report the first utilization of Hadamard transform CE (HTCE), a high-sensitivity, multiplexed CE technique, with photolytic optical gating sample injection of caged fluorescent labels for the detection of biologically important amines. Previous implementations of HTCE have relied upon photobleaching optical gating sample injection of fluorescent dyes. Photolysis of caged fluorescent labels reduces the fluorescence background, providing marked enhancements in sensitivity compared to photobleaching.
View Article and Find Full Text PDFWe report a new approach for collecting and deconvoluting the data in Hadamard transform capillary electrophoresis, referred to as fast Hadamard transform capillary electrophoresis (fHTCE). Using fHTCE, total analysis times can be reduced by up to 48% per multiplexed separation compared to conventional Hadamard transform capillary electrophoresis (cHTCE) while providing comparable signal-to-noise ratio enhancements. In fHTCE, the sample is injected following a pseudorandom pulsing sequence derived from the first row of a simplex matrix (S-matrix) in contrast to cHTCE, which utilizes a sequence of twice the length.
View Article and Find Full Text PDFA two-photon-activatable photoacid generator, based on a bis[(diarylamino) styryl]benzene core with covalently attached sulfonium moieties, has been synthesized. The photoacid generator has both a large two-photon absorption cross section (delta = 690 x 10(-50) centimeter(4) second per photon) and a high quantum yield for the photochemical generation of acid (phiH+ = 0.5).
View Article and Find Full Text PDF