Melanoma is a highly prevalent cancer with an increasing incidence worldwide and high metastatic potential. Brain metastasis is a major complication of the disease, as more than 50% of metastatic melanoma patients eventually develop intracranial disease. MicroRNAs (miRNAs) have been found to play an important role in the tumorigenicity of different cancers and have potential as markers of disease outcome.
View Article and Find Full Text PDFMetastasis is a complex process, requiring cells to overcome barriers that are only incompletely modeled by in vitro assays. A systematic workflow was established using robust, reproducible in vivo models and standardized methods to identify novel players in melanoma metastasis. This approach allows for data inference at specific experimental stages to precisely characterize a gene's role in metastasis.
View Article and Find Full Text PDFUnlabelled: Brain metastasis is a significant cause of morbidity and mortality in multiple cancer types and represents an unmet clinical need. The mechanisms that mediate metastatic cancer growth in the brain parenchyma are largely unknown. Melanoma, which has the highest rate of brain metastasis among common cancer types, is an ideal model to study how cancer cells adapt to the brain parenchyma.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are a class of endogenous non-coding small RNAs that post-transcriptionally control the translation and stability of target mRNAs in a sequence-dependent manner. MiRNAs are essential for key cellular processes including proliferation, differentiation, cell death and metabolism, among others. Consequently, alterations of miRNA expression contribute to developmental defects and a myriad of diseases.
View Article and Find Full Text PDFMapping host-pathogen interactions has proven instrumental for understanding how viruses manipulate host machinery and how numerous cellular processes are regulated. DNA viruses such as herpesviruses have relatively large coding capacity and thus can target an extensive network of cellular proteins. To identify the host proteins hijacked by this pathogen, we systematically affinity tagged and purified all 89 proteins of Kaposi's sarcoma-associated herpesvirus (KSHV) from human cells.
View Article and Find Full Text PDF