Publications by authors named "Kevin Klann"

Glioblastoma is an incurable brain tumor with a median survival below two years. Trials investigating targeted therapy with inhibitors of the kinase mTOR have produced ambiguous results. Especially combination of mTOR inhibition with standard temozolomide radiochemotherapy has resulted in reduced survival in a phase II clinical trial.

View Article and Find Full Text PDF

Despite the importance of rapid adaptive responses in the course of inflammation and the notion that post-transcriptional regulation plays an important role herein, relevant translational alterations, especially during the resolution phase, remain largely elusive. In the present study, we analyzed translational changes in inflammatory bone marrow-derived macrophages upon resolution-promoting efferocytosis. Total RNA-sequencing confirmed that apoptotic cell phagocytosis induced a pro-resolution signature in LPS/IFNγ-stimulated macrophages (Mϕ).

View Article and Find Full Text PDF

SREBP2 is a master regulator of the mevalonate pathway (MVP), a biosynthetic process that drives the synthesis of dolichol, heme A, ubiquinone and cholesterol and also provides substrates for protein prenylation. Here, we identify SREBP2 as a novel substrate for USP28, a deubiquitinating enzyme that is frequently upregulated in squamous cancers. Our results show that silencing of USP28 reduces expression of MVP enzymes and lowers metabolic flux into this pathway.

View Article and Find Full Text PDF

The ancestral SARS-CoV-2 strain that initiated the Covid-19 pandemic at the end of 2019 has rapidly mutated into multiple variants of concern with variable pathogenicity and increasing immune escape strategies. However, differences in host cellular antiviral responses upon infection with SARS-CoV-2 variants remain elusive. Leveraging whole-cell proteomics, we determined host signaling pathways that are differentially modulated upon infection with the clinical isolates of the ancestral SARS-CoV-2 B.

View Article and Find Full Text PDF

Although malignant gliomas frequently show aberrant activation of the mammalian target of rapamycin (mTOR), mTOR inhibitors have performed poorly in clinical trials. Besides regulating cell growth and translation, mTOR controls the initiation of autophagy. By recycling cellular components, autophagy can mobilize energy resources, and has thus been attributed cancer-promoting effects.

View Article and Find Full Text PDF
Article Synopsis
  • In about 25% of acute myeloid leukemia (AML) patients, a genetic change called FLT3 internal tandem duplications (ITD) makes their leukemia worse and harder to treat.
  • Some common treatments called FLT3 inhibitors (FLT3i) often don’t work well because the cancer cells adapt and resist the therapy, making it a big challenge for doctors.
  • Researchers found that a process called autophagy helps these leukemia cells resist treatment, and combining FLT3 inhibitors with autophagy blockers made the treatment much more effective in experiments on lab cells and mice.
View Article and Find Full Text PDF

Aggressive and metastatic cancers show enhanced metabolic plasticity, but the precise underlying mechanisms of this remain unclear. Here we show how two NOP2/Sun RNA methyltransferase 3 (NSUN3)-dependent RNA modifications-5-methylcytosine (mC) and its derivative 5-formylcytosine (fC) (refs.)-drive the translation of mitochondrial mRNA to power metastasis.

View Article and Find Full Text PDF

Selective Ribosome Profiling (SeRP) is an emerging methodology, developed to capture cotranslational interactions in vivo. To date, SeRP is the only method that can directly capture, in near-codon resolution, ribosomes in action. Thus, SeRP allows us to study the mechanisms of protein synthesis and the network of protein-protein interactions that are formed already during synthesis.

View Article and Find Full Text PDF

Background: Despite advances in treatment of patients with non-small cell lung cancer, carriers of certain genetic alterations are prone to failure. One such factor frequently mutated, is the tumor suppressor PTEN. These tumors are supposed to be more resistant to radiation, chemo- and immunotherapy.

View Article and Find Full Text PDF

Multiplexed enhanced protein dynamic mass spectrometry (mePROD MS) enables robust quantification of translation in cell culture. Tandem mass tags (TMT) are combined with pulsed stable isotope labeling in cell culture (pSILAC) to monitor newly synthesized proteins on a proteome wide scale. While approaches combining pSILAC and TMT typically require long labeling times to reach sufficient intensity of the newly synthesized peptides in the mass spectrometer, mePROD uses a carrier signal that boosts the survey scan intensity and strongly increases identification rates.

View Article and Find Full Text PDF

Here, we present a peptide-based linear mixed models tool-PBLMM, a standalone desktop application for differential expression analysis of proteomics data. We also provide a Python package that allows streamlined data analysis workflows implementing the PBLMM algorithm. PBLMM is easy to use without scripting experience and calculates differential expression by peptide-based linear mixed regression models.

View Article and Find Full Text PDF

Acute kidney injury is associated with mortality in COVID-19 patients. However, host cell changes underlying infection of renal cells with SARS-CoV-2 remain unknown and prevent understanding of the molecular mechanisms that may contribute to renal pathology. Here, we carried out quantitative translatome and whole-cell proteomics analyses of primary renal proximal and distal tubular epithelial cells derived from human donors infected with SARS-CoV-2 or MERS-CoV to disseminate virus and cell type-specific changes over time.

View Article and Find Full Text PDF

Most mitochondrial proteins are translated in the cytosol and imported into mitochondria. Mutations in the mitochondrial protein import machinery cause human pathologies. However, a lack of suitable tools to measure protein uptake across the mitochondrial proteome has prevented the identification of specific proteins affected by import perturbation.

View Article and Find Full Text PDF

Squamous cell carcinomas (SCC) frequently have an exceptionally high mutational burden. As consequence, they rapidly develop resistance to platinum-based chemotherapy and overall survival is limited. Novel therapeutic strategies are therefore urgently required.

View Article and Find Full Text PDF

is an intracellular pathogen of a substantial global health concern. In order to identify key players involved in infection, we performed a global host phosphoproteome analysis subsequent to bacterial infection. Thereby, we identified the kinase SIK2 as a central component of the host defense machinery upon infection.

View Article and Find Full Text PDF

The host cell proteome undergoes a variety of dynamic changes during viral infection, elicited by the virus itself or host cell defense mechanisms. Studying these changes on a global scale by integrating functional and physical interactions within protein networks during infection is an important tool to understand pathology. Indeed, proteomics studies dissecting protein signaling cascades and interaction networks upon infection showed how global information can significantly improve understanding of disease mechanisms of diverse viral infections.

View Article and Find Full Text PDF

Cell-free therapy using extracellular vesicles (EVs) from adipose-derived mesenchymal stromal/stem cells (ASCs) seems to be a safe and effective therapeutic option to support tissue and organ regeneration. The application of EVs requires particles with a maximum regenerative capability and hypoxic culture conditions as an in vitro preconditioning regimen has been shown to alter the molecular composition of released EVs. Nevertheless, the EV cargo after hypoxic preconditioning has not yet been comprehensively examined.

View Article and Find Full Text PDF
[Not Available].

Biospektrum (Heidelb)

February 2021

Upon infection with SARS-CoV-2, a variety of changes happen inside the host cell. The virus hijacks host cell pathways for driving its own replication, while the host counteracts with response mechanisms. To gain a comprehensive understanding of COVID-19, caused by SARS-CoV-2 infection, and develop therapeutic strategies, it is crucial to observe these systematic changes in their entirety.

View Article and Find Full Text PDF
Article Synopsis
  • SARS-CoV-2 is the virus responsible for the COVID-19 pandemic, and protease inhibitors are being explored as a way to stop the virus from entering and replicating inside host cells.
  • The study found that aprotinin effectively inhibits SARS-CoV-2 replication at therapeutically relevant concentrations, unlike another inhibitor, SERPINA1/alpha-1 antitrypsin.
  • Aprotinin shows promise as a treatment by potentially compensating for the downregulation of host protease inhibitors during the virus's replication cycles and could be useful in aerosol form for controlling early infection and preventing severe disease.
View Article and Find Full Text PDF

The mammalian target of rapamycin and the integrated stress response are central cellular hubs regulating translation upon stress. The precise proteins and pathway specificity of translation targets of these pathways remained largely unclear. We recently described a new method for quantitative translation proteomics and found that both pathways control translation of the same sets of proteins.

View Article and Find Full Text PDF

SARS-CoV-2 infections are rapidly spreading around the globe. The rapid development of therapies is of major importance. However, our lack of understanding of the molecular processes and host cell signaling events underlying SARS-CoV-2 infection hinders therapy development.

View Article and Find Full Text PDF

Nerve injury-induced neuropathic pain is difficult to treat and mechanistically characterized by strong neuroimmune interactions, involving signaling lipids that act via specific G-protein coupled receptors. Here, we investigated the role of the signaling lipid receptor G2A (GPR132) in nerve injury-induced neuropathic pain using the robust spared nerve injury (SNI) mouse model. We found that the concentrations of the G2A agonist 9-HODE (9-Hydroxyoctadecadienoic acid) are strongly increased at the site of nerve injury during neuropathic pain.

View Article and Find Full Text PDF

Pulsed Stable Isotope Labeling in Cell culture (SILAC) approaches allow measurement of protein dynamics, including protein translation and degradation. However, its use for quantifying acute changes has been limited due to low labeled peptide stoichiometry. Here, we describe the use of instrument logic to select peaks of interest via targeted mass differences (TMD) for overcoming this limitation.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session3fi7fustd9uii8g1k0blmn9a8m4rbrlk): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once