Publications by authors named "Kevin Kenow"

Maternal transfer is a predominant route of methylmercury (MeHg) exposure to offspring. We reviewed and synthesized published and unpublished data on maternal transfer of MeHg in birds. Using paired samples of females' blood ( = 564) and their eggs ( = 1814) from 26 bird species in 6 taxonomic orders, we conducted a meta-analysis to evaluate whether maternal transfer of MeHg to eggs differed among species and caused differential toxicity risk to embryos.

View Article and Find Full Text PDF

Conservation of long-distance migratory species poses unique challenges. Migratory connectivity, that is, the extent to which groupings of individuals at breeding sites are maintained in wintering areas, is frequently used to evaluate population structure and assess use of key habitat areas. However, for species with complex or variable annual cycle movements, this traditional bimodal framework of migratory connectivity may be overly simplistic.

View Article and Find Full Text PDF

Common loons (Gavia immer) are at risk of elevated dietary mercury (Hg) exposure in portions of their breeding range. To assess the level of risk among loons in Minnesota (USA), we investigated loon blood Hg concentrations in breeding lakes across Minnesota. Loon blood Hg concentrations were regressed on predicted Hg concentrations in standardized 12-cm whole-organism yellow perch (Perca flavescens), based on fish Hg records from Minnesota lakes, using the US Geological Survey National Descriptive Model for Mercury in Fish.

View Article and Find Full Text PDF

We investigated the relation between environmental mercury exposure and corticosterone concentrations in free-living adult common loons (Gavia immer). We determined blood and feather mercury concentrations and compared them to testosterone, estradiol, and stress-induced plasma corticosterone concentrations. Although neither testosterone nor estradiol correlated with Hg levels, there was a robust positive relation between blood Hg and stress-induced corticosterone concentrations in males, but not in females.

View Article and Find Full Text PDF

Conserving migratory birds is made especially difficult because of movement among spatially disparate locations across the annual cycle. In light of challenges presented by the scale and ecology of migratory birds, successful conservation requires integrating objectives, management, and monitoring across scales, from local management units to ecoregional and flyway administrative boundaries. We present an integrated approach using a spatially explicit energetic-based mechanistic bird migration model useful to conservation decision-making across disparate scales and locations.

View Article and Find Full Text PDF

A field study was conducted in Wisconsin (USA) to characterize in ovo mercury (Hg) exposure in common loons (Gavia immer). Total Hg mass fractions ranged from 0.17 µg/g to 1.

View Article and Find Full Text PDF

Common loon chicks were reared in captivity in association with studies to evaluate the effects of radiotransmitter implants and to assess the ecological risk of dietary methylmercury. Here we report on hatching and rearing methods used to successfully raise chicks to 105 days of age. We experienced a 91.

View Article and Find Full Text PDF

The primary objective of this study was to determine whether tree swallows (Tachycineta bicolor) demonstrate similar responses to lake pH and mercury (Hg) contamination in northern Wisconsin as do common loons (Gavia immer). Similar to common loons, Hg concentrations in the blood of tree swallow nestlings were higher, Hg concentrations in eggs tended to be higher, and egg size tended to be smaller at low (<6.2) pH lakes.

View Article and Find Full Text PDF

We assessed the ecological risk of mercury (Hg) in aquatic systems by monitoring common loon (Gavia immer) population dynamics and blood Hg concentrations. We report temporal trends in blood Hg concentrations based on 334 samples collected from adults recaptured in subsequent years (resampled 2-9 times) and from 421 blood samples of chicks collected at lakes resampled 2-8 times 1992-2010. Temporal trends were identified with generalized additive mixed effects models and mixed effects models to account for the potential lack of independence among observations from the same loon or same lake.

View Article and Find Full Text PDF

To determine the level of in ovo methylmercury (MeHg) exposure that results in detrimental effects on fitness and survival of loon embryos and hatched chicks, we conducted a field study in which we injected eggs with various doses of MeHg on day 4 of incubation. Eggs were collected following about 23 days of natural incubation and artificially incubated to observe hatching. Reduced embryo survival was evident in eggs injected at a rate of ≥1.

View Article and Find Full Text PDF

Behavioral effects resulting from exposure to dietary methylmercury (MeHg) have been reported in studies of several wildlife species. However, quantifying the impact of contaminant exposure on wild populations is complicated by the confounding effects of other environmental stressors. We controlled confounding stressors in a laboratory study to quantify the level of dietary MeHg exposure associated with negative effects on the fitness of captive-reared common loon (Gavia immer) chicks.

View Article and Find Full Text PDF

We quantified the level of dietary mercury (Hg), delivered as methylmercury chloride (CH3HgCl), associated with negative effects on organ and plasma biochemistries related to glutathione (GSH) metabolism and oxidative stress, and chromosomal damage in captive-reared common loon (Gavia immer) chicks reared from hatch to 105 days. Mercury-associated effects related to oxidative stress and altered glutathione metabolism occurred at 1.2 microg Hg/g and 0.

View Article and Find Full Text PDF

We conducted a dose-response laboratory study to quantify the level of exposure to dietary Hg, delivered as methylmercury chloride (CH3HgCl), that is associated with suppressed immune function in captive-reared common loon (Gavia immer) chicks. We used the phytohemagglutinin (PHA) skin test to assess T-lymphocyte function and the sheep red blood cell (SRBC) hemagglutination test to measure antibody-mediated immunity. The PHA stimulation index among chicks receiving dietary Hg treatment did not differ significantly from those of chicks on the control diet (p = 0.

View Article and Find Full Text PDF

We determined the distribution and accumulation of Hg in tissues of common loon (Gavia immer) chicks maintained for up to 15 weeks on either a control diet with no added methylmercury chloride (MeHgCl) or one containing either 0.4 or 1.2 microg Hg (as MeHgCl)/g wet-weight food.

View Article and Find Full Text PDF

A bioenergetics model was used to predict food intake of common loon (Gavia immer) chicks as a function of body mass during development, and a pharmacokinetics model, based on first-order kinetics in a single compartment, was used to predict blood Hg level as a function of food intake rate, food Hg content, body mass, and Hg absorption and elimination. Predictions were tested in captive growing chicks fed trout (Salmo gairdneri) with average MeHg concentrations of 0.02 (control), 0.

View Article and Find Full Text PDF

We conducted a dose-response laboratory study to quantify the level of mercury exposure associated with negative effects on the development of common loon chicks reared in captivity from hatch to 105 days. A dose regimen was implemented that provided exposure levels that bracketed relevant exposure levels of methyl mercury found in loon chicks across North America. We observed no overt signs of mercury toxicosis and detected no significant effect of dietary mercury exposure on growth or food consumption.

View Article and Find Full Text PDF

We compared the toxicokinetics of methylmercury in captive common loon chicks during two time intervals to assess the impact of feather growth on the kinetics of mercury. We also determined the oral bioavailability of methylmercury during these trials to test for age-related changes. The blood concentration-time curves for individuals dosed during feather development (initiated 35 days post hatch) were best described by a one-compartment toxicokinetic model with an elimination half-life of 3 days.

View Article and Find Full Text PDF