Background: Diabetes, which is characterized by an increase in blood glucose concentration, is accompanied by low bone turnover, increased fracture risk, and the formation of embryonic skeletal malformations. Yet, there are few studies elucidating the underlying alterations in signaling pathways leading to these osteogenic defects. We hypothesized here that bone formation deficiencies in a high glucose environment result from altered activity of beta-catenin (CTNNB1), a key contributor to osteogenic differentiation, dysregulation of which has also been implicated in the development of diabetes.
View Article and Find Full Text PDFThe success of human pluripotent stem cells (hPSCs) as a source of future cell therapies hinges, in part, on the availability of a robust and scalable culture system that can readily produce a clinically relevant number of cells and their derivatives. Stirred suspension culture has been identified as one such promising platform due to its ease of use, scalability, and widespread use in the pharmaceutical industry (e.g.
View Article and Find Full Text PDFThe specification of pluripotent stem cells into the bone-forming osteoblasts has been explored in a number of studies. However, the current body of literature has yet to adequately address the role of Wnt glycoproteins in the differentiation of pluripotent stem cells along the osteogenic lineage. During mouse embryonic stem cell (ESC) in vitro osteogenesis, the noncanonical WNT5a is expressed early on.
View Article and Find Full Text PDFGlutamate is an indispensable neurotransmitter, triggering postsynaptic signals upon recognition by postsynaptic receptors. We questioned the phylogenetic position and the molecular details of when and where glutamate recognition arose in the glutamate-gated chloride channels. Experiments revealed that glutamate recognition requires an arginine residue in the base of the binding site, which originated at least three distinct times according to phylogenetic analysis.
View Article and Find Full Text PDFMany industrial chemicals and their respective by-products need to be comprehensively evaluated for toxicity using reliable and efficient assays. In terms of teratogenicity evaluations, the murine-based embryonic stem cell test (EST) offers a promising solution to screen for multiple tissue endpoints. However, use of a mouse model in the EST can yield only a limited understanding of human development, anatomy, and physiology.
View Article and Find Full Text PDFCrit Rev Eukaryot Gene Expr
October 2014
Despite significant promise, the routine usage of suspension cell culture to manufacture stem cell-derived differentiated cells has progressed slowly. Suspension culture is an innovative way of either expanding or differentiating cells and sometimes both are combined into a single bioprocess. Its advantages over static 2D culturing include a homogeneous and controllable culture environment and producing a large quantity of cells in a fraction of time.
View Article and Find Full Text PDFNitric oxide (NO) has been shown to play a crucial role in bone formation in vivo. We sought to determine the temporal effect of NO on murine embryonic stem cells (ESCs) under culture conditions that promote osteogenesis. Expression profiles of NO pathway members and osteoblast-specific markers were analyzed using appropriate assays.
View Article and Find Full Text PDFTraditionally, the people responsible for positioning brands have concentrated on the differences that set each brand apart from the competition. But emphasizing differences isn't enough to sustain a brand against competitors. Managers should also consider the frame of reference within which the brand works and the features the brand shares with other products.
View Article and Find Full Text PDF