Publications by authors named "Kevin Kan"

Automated platforms assessing the stability of electrocatalysts are key to accelerate the deployment of clean energy technologies. Here, we present a robust system that allows the study of corrosion behavior in conjunction with the electrochemical protocol and electrolyte composition over many individual electrodes. Oxygen reduction reaction on Pt is used as a proof-of-concept platform, where the influence of the potential window and phosphoric acid (PA) addition on Pt dissolution is probed.

View Article and Find Full Text PDF

Study Objectives: This study evaluated the utility and ecological validity of the 3-minute psychomotor vigilance test (PVT) completed by safety-critical personnel in an air medical transport operation as part of a fatigue risk management program.

Methods: Crewmembers in an air medical transport operation self-administered an alertness assessment incorporating a 3-minute PVT at different time points during their duty schedule. The prevalence of alertness deficits was evaluated based on a failure threshold of 12 errors considering both lapses and false starts.

View Article and Find Full Text PDF

The quest to identify materials with tailored properties is increasingly expanding into high-order composition spaces, with a corresponding combinatorial explosion in the number of candidate materials. A key challenge is to discover regions in composition space where materials have novel properties. Traditional predictive models for material properties are not accurate enough to guide the search.

View Article and Find Full Text PDF

Establishing synthesis methods for a target material constitutes a grand challenge in materials research, which is compounded with use-inspired specifications on the format of the material. Solar photochemistry using thin film materials is a promising technology for which many complex materials are being proposed, and the present work describes application of combinatorial methods to explore the synthesis of predicted La-Bi-Cu oxysulfide photocathodes, in particular alloys of LaCuOS and BiCuOS. The variation in concentration of three cations and two anions in thin film materials, and crystallization thereof, is achieved by a combination of reactive sputtering and thermal processes including reactive annealing and rapid thermal processing.

View Article and Find Full Text PDF

Fatigue causes decrements in vigilant attention and reaction time and is a major safety hazard in the trucking industry. There is a need to quantify the relationship between driver fatigue and safety in terms of operationally relevant measures. Hard-braking events are a suitable measure for this purpose as they are relatively easily observed and are correlated with collisions and near-crashes.

View Article and Find Full Text PDF

Commercial motor vehicle (CMV) drivers in the US may start a new duty cycle after taking a 34-h restart break. A restart break provides an opportunity for sleep recuperation to help prevent the build-up of fatigue across duty cycles. However, the effectiveness of a restart break may depend on its timing, and on how many nighttime opportunities for sleep it contains.

View Article and Find Full Text PDF

Many next-generation technologies are limited by material performance, leading to increased interest in the discovery of advanced materials using combinatorial synthesis, characterization, and screening. Several combinatorial synthesis techniques, such as solution based methods, advanced manufacturing, and physical vapor deposition, are currently being employed for various applications. In particular, combinatorial magnetron sputtering is a versatile technique that provides synthesis of high-quality thin film composition libraries.

View Article and Find Full Text PDF

Behavioral health risks are among the most serious and difficult to mitigate risks of confinement in space craft during long-duration space exploration missions. We report on behavioral and psychological reactions of a multinational crew of 6 healthy males confined in a 550 m(3) chamber for 520 days during the first Earth-based, high-fidelity simulated mission to Mars. Rest-activity of crewmembers was objectively measured throughout the mission with wrist-worn actigraphs.

View Article and Find Full Text PDF

Cellulose nanocrystals (CNCs) are a sustainable nanomaterial with applications spanning composites, coatings, gels, and foams. Surface modification routes to optimize CNC interfacial compatibility and functionality are required to exploit the full potential of this material in the design of new products. In this work, CNCs have been rendered pH-responsive by surface-initiated graft polymerization of 4-vinylpyridine with the initiator ceric(IV) ammonium nitrate.

View Article and Find Full Text PDF

The success of interplanetary human spaceflight will depend on many factors, including the behavioral activity levels, sleep, and circadian timing of crews exposed to prolonged microgravity and confinement. To address the effects of the latter, we used a high-fidelity ground simulation of a Mars mission to objectively track sleep-wake dynamics in a multinational crew of six during 520 d of confined isolation. Measurements included continuous recordings of wrist actigraphy and light exposure (4.

View Article and Find Full Text PDF