We demonstrate colloidal, layer-by-layer growth of metal oxide shells on InP quantum dots (QDs) at room temperature. We show with computational modeling that native InP QD surface oxides give rise to nonradiative pathways due to the presence of surface-localized dark states near the band edges. Replacing surface indium with zinc to form a ZnO shell results in reduced nonradiative decay and a density of states at the valence band edge that resembles defect-free, stoichiometric InP.
View Article and Find Full Text PDF