Solving the electronic Schrodinger equation for strongly correlated ground states is a long-standing challenge. We present quantum algorithms for the variational optimization of wave functions correlated by products of unitary operators, such as Local Unitary Cluster Jastrow (LUCJ) ansatzes, using stochastic reconfiguration (SR) and the linear method (LM). While an implementation on classical computing hardware would require exponentially growing compute cost, the cost (number of circuits and shots) of our quantum algorithms is polynomial in system size.
View Article and Find Full Text PDFA prominent goal in quantum chemistry is to solve the molecular electronic structure problem for ground state energy with high accuracy. While classical quantum chemistry is a relatively mature field, the accurate and scalable prediction of strongly correlated states found, , in bond breaking and polynuclear transition metal compounds remains an open problem. Within the context of a variational quantum eigensolver, we propose a new family of ansatzes which provides a more physically appropriate description of strongly correlated electrons than a unitary coupled cluster with single and double excitations (qUCCSD), with vastly reduced quantum resource requirements.
View Article and Find Full Text PDFThe promise of quantum computers is that certain computational tasks might be executed exponentially faster on a quantum processor than on a classical processor. A fundamental challenge is to build a high-fidelity processor capable of running quantum algorithms in an exponentially large computational space. Here we report the use of a processor with programmable superconducting qubits to create quantum states on 53 qubits, corresponding to a computational state-space of dimension 2 (about 10).
View Article and Find Full Text PDF