In a coupled quantum-dot-nanocavity system, the photoluminescence from an off-resonance cavity mode exhibits strong quantum correlations with the quantum-dot transitions, even though its autocorrelation function is classical. Using new pump-power dependent photon-correlation measurements, we demonstrate that this seemingly contradictory observation that has so far defied an explanation stems from cascaded cavity photon emission in transitions between excited multiexciton states. The mesoscopic nature of quantum-dot confinement ensures the presence of a quasicontinuum of excitonic transitions, part of which overlaps with the cavity resonance.
View Article and Find Full Text PDFWe show how cavity quantum electrodynamics using a tunable photonic crystal nanocavity in the strong-coupling regime can be used for single quantum dot spectroscopy. From the distinctive avoided crossings observed in the strongly coupled system we can identify the neutral and single positively charged exciton as well as the biexciton transitions. Moreover we are able to investigate the fine structure of those transitions and to identify a novel cavity mediated mixing of bright and dark exciton states, where the hyperfine interactions with lattice nuclei presumably play a key role.
View Article and Find Full Text PDF