Chlamydia trachomatis (CT) is a sexually transmitted infection that can lead to adverse reproductive health outcomes. CT prevalence estimates are primarily derived from screening using nucleic acid amplification tests (NAATs). However, screening guidelines in the United States only include particular subpopulations, and NAATs only detect current infections.
View Article and Find Full Text PDFEvading host innate immune defenses is a critical feature of infections, and the mechanisms used by to subvert these pathways are incompletely understood. We screened a library of chimeric mutants for genetic factors important for interference with cell-autonomous immune defenses. Mutant strains with predicted truncations of the inclusion membrane protein CT135 were susceptible to interferon gamma-activated immunity in human cells.
View Article and Find Full Text PDFNon-neutralizing functions of antibodies, including phagocytosis, may play a role in (CT) infection, but these functions have not been studied and assays are lacking. We utilized a flow-cytometry-based assay to determine whether serum samples from a well-characterized cohort of CT-infected and naïve control individuals enhanced phagocytosis via Fc-receptor-expressing THP-1 cells, and whether this activity correlated with antibody titers. Fc-receptor-mediated phagocytosis was detected only in CT+ donors.
View Article and Find Full Text PDFChlamydia trachomatis is an obligate intracellular bacterium that causes serious diseases in humans. Rectal infection and disease caused by this pathogen are important yet understudied aspects of C. trachomatis natural history.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
March 2022
Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infections globally and is one of the most commonly reported infections in the United States. There is a need to develop new therapeutics due to drug resistance and the failure of current treatments to clear persistent infections. Structures of potential C.
View Article and Find Full Text PDFPlasmid transformation of chlamydiae has created new opportunities to investigate host-microbe interactions during chlamydial infections; however, there are still limitations. Plasmid transformation requires a replicon derived from the native Chlamydia plasmid, and these transformations are species-specific. We explored the utility of a broad host-range plasmid, pBBR1MCS-4, to transform chlamydiae, with a goal of simplifying the transformation process.
View Article and Find Full Text PDFChlamydia muridarum actively grows in murine mucosae and is a representative model of human chlamydial genital tract disease. In contrast, C. trachomatis infections in mice are limited and rarely cause disease.
View Article and Find Full Text PDFObjective: To determine the sexually transmitted infection (STI) vaccine research priorities of global leaders in STI vaccine research, development, and service provision.
Methods: Global representatives attending the symposium preceding the STI & HIV World Congress in 2019 were invited to complete an electronic survey. We asked participants to rank items by importance/priority for STI vaccine development for the following areas of focus: specific STIs (gonorrhea, chlamydia, syphilis, herpes, and trichomoniasis), broad research domains (basic science, funding, communication, program planning, and vaccine hesitancy), and specific research activities related to these domains.
Wikidata is a community-maintained knowledge base that has been assembled from repositories in the fields of genomics, proteomics, genetic variants, pathways, chemical compounds, and diseases, and that adheres to the FAIR principles of findability, accessibility, interoperability and reusability. Here we describe the breadth and depth of the biomedical knowledge contained within Wikidata, and discuss the open-source tools we have built to add information to Wikidata and to synchronize it with source databases. We also demonstrate several use cases for Wikidata, including the crowdsourced curation of biomedical ontologies, phenotype-based diagnosis of disease, and drug repurposing.
View Article and Find Full Text PDFLateral gene transfer (LGT) among strains is common, in both isolates generated in the laboratory and those examined directly from patients. In contrast, there are very few examples of recent acquisition of DNA by any spp. from any other species.
View Article and Find Full Text PDFFunctional genetic analysis of has been a challenge due to the historical genetic intractability of , although recent advances in chlamydial genetic manipulation have begun to remove these barriers. Here, we report the development of the Himar C9 transposon system for , a mouse-adapted species that is widely used in infection models. We demonstrate the generation and characterization of an initial library of 33 chloramphenicol (Cam)-resistant, green fluorescent protein (GFP)-expressing transposon mutants.
View Article and Find Full Text PDFThe cellular exit strategies of intracellular pathogens have a direct impact on microbial dissemination, transmission, and engagement of immune responses of the host. exit their host via a budding mechanism called extrusion, which offers protective benefits to as they navigate their extracellular environment. Many intracellular pathogens co-opt cellular abscission machinery to facilitate cell exit, which is utilized to perform scission of two newly formed daughter cells following mitosis.
View Article and Find Full Text PDFChlamydia trachomatis is the most common cause of bacterial sexually transmitted infection, responsible for millions of infections each year. Despite this high prevalence, the elucidation of the molecular mechanisms of Chlamydia pathogenesis has been difficult due to limitations in genetic tools and its intracellular developmental cycle. Within a host epithelial cell, chlamydiae replicate within a vacuole called the inclusion.
View Article and Find Full Text PDFBackground: Rectal Chlamydia trachomatis (CT) is common among clinic-attending women, but little is known about clearance and health implications of rectal CT.
Methods: At the municipal sexually transmitted disease clinic in Seattle, Washington, in 2017-2018, we enrolled women at high risk for urogenital CT into an 8-week prospective study. Women received standard CT treatment at enrollment.
Chlamydia secrete into host cells a diverse array of effector proteins, but progress in characterizing the spatiotemporal localization of these proteins has been hindered by a paucity of genetic approaches in Chlamydia and also by the challenge of studying these proteins within the live cellular environment. We adapted a split-green fluorescent protein (GFP) system for use in Chlamydia to label chlamydial effector proteins and track their localization in host cells under native environment. The efficacy of this system was demonstrated by detecting several known Chlamydia proteins including IncA, CT005 and CT694.
View Article and Find Full Text PDFChlamydia are gram-negative obligate intracellular bacteria that replicate within a discrete cellular vacuole, called an inclusion. Although it is known that Chlamydia require essential nutrients from host cells to support their intracellular growth, the molecular mechanisms for acquiring these macromolecules remain uncharacterized. In the present study, it was found that the expression of mammalian cell glucose transporter proteins 1 (GLUT1) and glucose transporter proteins 3 (GLUT3) were up-regulated during chlamydial infection.
View Article and Find Full Text PDFBacterial and host cyclic dinucleotides (cdNs) mediate cytosolic immune responses through the STING signaling pathway, although evidence suggests that alternative pathways exist. We used cdN-conjugated beads to biochemically isolate host receptors for bacterial cdNs, and we identified the oxidoreductase RECON. High-affinity cdN binding inhibited RECON enzyme activity by simultaneously blocking the substrate and cosubstrate sites, as revealed by structural analyses.
View Article and Find Full Text PDFThe strategies utilized by pathogens to exit host cells are an area of pathogenesis which has received surprisingly little attention, considering the necessity of this step for infections to propagate. Even less is known about how exit through these pathways affects downstream host-pathogen interactions and the generation of an immune response. exits host epithelial cells through two equally active mechanisms: lysis and extrusion.
View Article and Find Full Text PDFThe precise strategies that intracellular pathogens use to exit host cells have a direct impact on their ability to disseminate within a host, transmit to new hosts, and engage or avoid immune responses. The obligate intracellular bacterium Chlamydia trachomatis exits the host cell by two distinct exit strategies, lysis and extrusion. The defining characteristics of extrusions, and advantages gained by Chlamydia within this unique double-membrane structure, are not well understood.
View Article and Find Full Text PDF