Publications by authors named "Kevin Heesh"

A large variety of optical systems and devices are highly sensitive to temperature variations and gradients induced by the absorption of thermal energy. Temperature gradients developed across optical elements, mounts, and supporting structures can lead to thermally induced wavefront aberrations and, consequently, to the reduction of optical performance. Consequently, modeling, estimation, and control of thermal dynamics are important problems that need to be carefully addressed by optical system designers.

View Article and Find Full Text PDF

Structural, Thermal, and Optical Performance (STOP) analysis is important for understanding the dynamics and for predicting the performance of a large number of optical systems whose proper functioning is negatively influenced by thermally induced aberrations. Furthermore, STOP models are being used to design and test passive and active methods for the compensation of thermally induced aberrations. However, in many cases and scenarios, the lack of precise knowledge of system parameters and equations governing the dynamics of thermally induced aberrations can significantly deteriorate the prediction accuracy of STOP models.

View Article and Find Full Text PDF