Publications by authors named "Kevin H Liu"

Long-lived quiescent mammary stem cells (MaSCs) are presumed to coordinate the dramatic expansion of ductal epithelium that occurs through the different phases of postnatal development, but little is known about the molecular regulators that underpin their activation. We show that ablation of the transcription factor Foxp1 in the mammary gland profoundly impairs ductal morphogenesis, resulting in a rudimentary tree throughout life. Foxp1-deficient glands were highly enriched for quiescent Tspan8 MaSCs, which failed to become activated even in competitive transplantation assays, thus highlighting a cell-intrinsic defect.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzes the mammary epithelium using single-cell RNA profiling across four developmental stages in mice, highlighting significant changes in gene expression.
  • The research identifies a shift from a homogeneous basal-like gene expression in pre-puberty to distinct lineage-restricted programs during puberty.
  • Additionally, it reveals various cell populations, including an early progenitor subset marked by CD55, a luminal transit population, and a rare mixed-lineage cluster, indicating a complex developmental hierarchy within the mammary gland.
View Article and Find Full Text PDF

Despite accumulating evidence for a mammary differentiation hierarchy, the basal compartment comprising stem cells remains poorly characterized. Through gene expression profiling of Lgr5 basal epithelial cells, we identify a new marker, Tetraspanin8 (Tspan8). Fractionation based on Tspan8 and Lgr5 expression uncovered three distinct mammary stem cell (MaSC) subsets in the adult mammary gland.

View Article and Find Full Text PDF

Gastrins, including amidated gastrin17 and glycine-extended gastrin17, are important growth factors in colorectal cancer (CRC). The p21-activated kinase 1 (PAK1) plays key roles in cellular processes including proliferation, survival, and motility, and in cell transformation and tumor progression. PAK1 expression increases with the progression of CRC, and knockdown of PAK1 blocks CRC cell growth and metastasis both in vitro and in vivo.

View Article and Find Full Text PDF

P21 activated kinase 1 (PAK1) enhances colorectal cancer (CRC) progression by stimulating Wnt/β-catenin and Ras oncogene, which promote CRC survival via stimulation of hypoxia-inducible factor 1α (HIF-1α). The aim of this study was to assess the mechanism involved in the stimulation by PAK1 of CRC survival. PAK1 promoted CRC cell survival by up-regulation of HIF-1α.

View Article and Find Full Text PDF

The p21-activated kinase 1 (PAK1) plays important roles in cell growth, motility, and transformation. The aims of this study were to delineate the signalling mechanisms downstream of PAK1, and to investigate the importance of PAK1 for colorectal cancer (CRC) growth and metastasis in vivo. PAK1 knockdown in human CRC cell lines inhibited β-catenin expression, β-catenin/TCF4 transcriptional activity, and the expression of c-Myc.

View Article and Find Full Text PDF

The p21-activated kinase (PAK) family of serine/threonine kinases plays an important role in cell proliferation, survival and motility, as well as in cell transformation and tumor progression. PAK1 promotes transformation through facilitating the ERK/MAPK pathway and enhances cell migration and survival by stimulating AKT. PAK1 expression increases with the progression of colorectal cancer (CRC).

View Article and Find Full Text PDF

Gastrins, including amidated gastrin (Gamide) and glycine-extended gastrin (Ggly), are known to accelerate the growth of gastric and colorectal cancer cells by stimulation of proliferation and inhibition of apoptosis. Gamide controls apoptosis by regulation of proteins of the Bcl-2 family and by regulation of the activation of caspases. However the interactions between Ggly and proteins of the Bcl-2 family and caspases are not known.

View Article and Find Full Text PDF