Significance: Photoacoustic imaging (PAI) promises to measure spatially resolved blood oxygen saturation but suffers from a lack of accurate and robust spectral unmixing methods to deliver on this promise. Accurate blood oxygenation estimation could have important clinical applications from cancer detection to quantifying inflammation.
Aim: We address the inflexibility of existing data-driven methods for estimating blood oxygenation in PAI by introducing a recurrent neural network architecture.
The development of x-ray free electron laser (XFEL) light sources and serial crystallography methodologies has led to a revolution in protein crystallography, enabling the determination of previously unobtainable protein structures and near-atomic resolution of otherwise poorly diffracting protein crystals. However, to utilize XFEL sources efficiently demands the continuous, rapid delivery of a large number of difficult-to-handle microcrystals to the x-ray beam. A recently developed fixed-target system, in which crystals of interest are enclosed within a sample holder, which is rastered through the x-ray beam, is discussed in detail in this Perspective.
View Article and Find Full Text PDFOver the past two decades, serial X-ray crystallography has enabled the structure determination of a wide range of proteins. With the advent of X-ray free-electron lasers (XFELs), ever-smaller crystals have yielded high-resolution diffraction and structure determination. A crucial need to continue advancement is the efficient delivery of fragile and micrometre-sized crystals to the X-ray beam intersection.
View Article and Find Full Text PDFBackground: There is paucity of data on Atrial Fibrillation (AF) management and associated clinical outcomes among Asian Americans. This study sought to investigate baseline risk factor profiles, racial disparities in clinical management and adverse clinical outcomes among White and Asian Americans.
Methods: We used National Cardiovascular Data Registry (NCDR®) Practice Innovation and Clinical Excellence (PINNACLE) registry and linked Centers of Medicare and Medicaid Services data to identify Asian and White patients with AF between January 1, 2013-June 30, 2018.
Objective: This study aimed to investigate the association between age and the risk of 30-day unplanned readmission among adult patients with acute myocardial infarction (AMI) undergoing percutaneous coronary intervention (PCI).
Methods: This retrospective analysis included patients from the Nationwide Readmissions Database with AMI who underwent PCI during 2013-2014. We used multivariable logistic regression model to calculate adjusted odds ratios (AORs) for risk of readmission.
Tunable bioprinting materials are capable of creating a broad spectrum of physiological mimicking 3D models enabling in vitro studies that more accurately resemble in vivo conditions. Tailoring the material properties of the bioink such that it achieves both bioprintability and biomimicry remains a key challenge. Here we report the development of engineered composite hydrogels consisting of gelatin and alginate components.
View Article and Find Full Text PDFRhoB, a member of the Ras homolog gene family and GTPase, regulates intracellular signaling pathways by interfacing with epidermal growth factor receptor (EGFR), Ras, and phosphatidylinositol 3-kinase (PI3K)/Akt to modulate responses in cellular structure and function. Notably, the EGFR, Ras, and PI3K/Akt pathways can lead to downregulation of RhoB, while simultaneously being associated with an increased propensity for tumorigenesis. Functionally, RhoB, part of the Rho GTPase family, regulates intracellular signaling pathways by interfacing with EGFR, RAS, and PI3K/Akt/mammalian target of rapamycin (mTOR), and MYC pathways to modulate responses in cellular structure and function.
View Article and Find Full Text PDFStretchable semiconducting polymers have been developed as a key component to enable skin-like wearable electronics, but their electrical performance must be improved to enable more advanced functionalities. Here, we report a solution processing approach that can achieve multi-scale ordering and alignment of conjugated polymers in stretchable semiconductors to substantially improve their charge carrier mobility. Using solution shearing with a patterned microtrench coating blade, macroscale alignment of conjugated-polymer nanostructures was achieved along the charge transport direction.
View Article and Find Full Text PDFThe electronic devices that play a vital role in our daily life are primarily based on silicon and are thus rigid, opaque, and relatively heavy. However, new electronics relying on polymer semiconductors are opening up new application spaces like stretchable and self-healing sensors and devices, and these can facilitate the integration of such devices into our homes, our clothing, and even our bodies. While there has been tremendous interest in such technologies, the widespread adoption of these organic electronics requires low-cost manufacturing techniques.
View Article and Find Full Text PDFRapid nanoscale imaging of the bulk heterojunction layer in organic solar cells is essential to the continued development of high-performance devices. Unfortunately, commonly used imaging techniques such as tunneling electron microscopy (TEM) and atomic force microscopy (AFM) suffer from significant drawbacks. For instance, assuming domain identity from phase contrast or topographical features can lead to inaccurate morphological conclusions.
View Article and Find Full Text PDFConjugated polymers are the key material in thin-film organic optoelectronic devices due to the versatility of these molecules combined with their semiconducting properties. A molecular-scale understanding of conjugated polymers is important to the optimization of the thin-film morphology. We examine the solution-phase behavior of conjugated isoindigo-based donor-acceptor polymer single chains of various chain lengths using atomistic molecular dynamics simulations.
View Article and Find Full Text PDFBackground: Bochdalek hernias (BHs) are usually diagnosed in the neonatal period, occurring in 1/2200-1/12,500 live births. There are few reported cases of BHs in adults. Robotic repair has not been described in current literature as opposed to the laparoscopic approach.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2016
We describe a compact roll-to-roll (R2R) coater that is capable of tracking the crystallization process of semiconducting polymers during solution printing using X-ray scattering at synchrotron beamlines. An improved understanding of the morphology evolution during the solution-processing of organic semiconductor materials during R2R coating processes is necessary to bridge the gap between "lab" and "fab". The instrument consists of a vacuum chuck to hold the flexible plastic substrate uniformly flat for grazing incidence X-ray scattering.
View Article and Find Full Text PDFMorphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization.
View Article and Find Full Text PDF