Photocatalysis appears as one of the most promising avenues to shift towards sustainable sources of energy, owing to its ability to transform solar light into chemical energy, production of chemical fuels oxygen evolution (OER) and CO reduction (CORR) reactions. Ti metal-organic frameworks (MOFs) and graphitic carbon nitride derivatives, poly-heptazine imides (PHI) are appealing CORR and OER photo-catalysts respectively. Engineering of an innovative Z-scheme heterojunction by assembling a Ti-MOF and PHI offers an unparalleled opportunity to mimick an artificial photosynthesis device for dual CORR/OER catalysis.
View Article and Find Full Text PDFEnergy conversion and pollutant degradation are critical for advancing sustainable technologies, yet they often encounter challenges related to charge recombination and efficiency limitations. This study explores iodine-doped TiO nanoparticles as a potential solution for enhancing both energy conversion and pollutant degradation. The nanoparticles were synthesized via the sol-gel method with varying iodine precursor concentrations (0.
View Article and Find Full Text PDFDensity functional theory (DFT) calculations were performed on the 5,15 meso-positions of nine porphyrin-containing MOFs; Zn(TCPB)-(NMe-ZnP); (HTCPB = 1,2,4,5-tetrakis(4-carboxyphenyl)benzene), (NMe-ZnP = [5,15-bis[(4-pyridyl)-ethynyl]-10,20-bis-(dimethylamine) porphinato]zinc(II)) functionalized with nitrogen-, oxygen-, and sulfur-containing groups to study their effects on the electronic, optical and transport properties of the materials. The properties of these materials have also been investigated by encapsulating fullerene (C) in their pores (C@MOFs). The results indicate that the guest C in the MOF generates high photoconductivity through efficient porphyrin/fullerene donor-acceptor (D-A) interactions, which are facilitated by oxygen and sulfur functionalities.
View Article and Find Full Text PDF