The utility of preclinical models of childhood cancers is contingent upon reliably classifying them with their corresponding clinical counterparts. Molecular tools such as gene expression profiling allow researchers to confirm the similarity between clinical tumors and preclinical models. We describe the use of gene expression profiling to show that SK-NEP-1, a cell line previously thought to represent anaplastic Wilms tumor, is instead related to Ewing sarcoma.
View Article and Find Full Text PDFContemporary treatment of pediatric acute myeloid leukemia (AML) requires the assignment of patients to specific risk groups. To explore whether expression profiling of leukemic blasts could accurately distinguish between the known risk groups of AML, we analyzed 130 pediatric and 20 adult AML diagnostic bone marrow or peripheral blood samples using the Affymetrix U133A microarray. Class discriminating genes were identified for each of the major prognostic subtypes of pediatric AML, including t(15;17)[PML-RARalpha], t(8;21)[AML1-ETO], inv(16) [CBFbeta-MYH11], MLL chimeric fusion genes, and cases classified as FAB-M7.
View Article and Find Full Text PDFContemporary treatment of pediatric acute lymphoblastic leukemia (ALL) requires the assignment of patients to specific risk groups. We have recently demonstrated that expression profiling of leukemic blasts can accurately identify the known prognostic subtypes of ALL, including T-cell lineage ALL (T-ALL), E2A-PBX1, TEL-AML1, MLL rearrangements, BCR-ABL, and hyperdiploid karyotypes with more than 50 chromosomes. As the next step toward developing this methodology into a frontline diagnostic tool, we have now analyzed leukemic blasts from 132 diagnostic samples using higher density oligonucleotide arrays that allow the interrogation of most of the identified genes in the human genome.
View Article and Find Full Text PDF