Publications by authors named "Kevin G Chen"

A robust understanding of the cellular mechanisms underlying diseases sets the foundation for the effective design of drugs and other interventions. The wealth of existing single-cell atlases offers the opportunity to uncover high-resolution information on expression patterns across various cell types and time points. To better understand the associations between cell types and diseases, we leveraged previously developed tools to construct a standardized analysis pipeline and systematically explored associations across four single-cell datasets, spanning a range of tissue types, cell types and developmental time periods.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers discovered a new pluripotent state in human embryonic stem cells (hESCs) induced by RSeT medium, which prevents the conversion to a naïve state.
  • The study analyzed the metabolic characteristics of RSeT hESCs, revealing a unique metabolome that includes additional fatty acid oxidation and imbalanced nucleotide metabolism beyond the typical glycolysis and oxidative phosphorylation.
  • These findings suggest a complex metabolic behavior, termed metabolic quadrivalency, that supports hESC growth regardless of oxygen levels and limits their ability to revert to a naïve state.
View Article and Find Full Text PDF

One of the most important properties of human embryonic stem cells (hESCs) is related to their primed and naïve pluripotent states. Our previous meta-analysis indicates the existence of heterogeneous pluripotent states derived from diverse naïve protocols. In this study, we have characterized a commercial medium (RSeT)-based pluripotent state under various growth conditions.

View Article and Find Full Text PDF

Clinical management of patients with severe complications of COVID-19 has been hindered by a lack of effective drugs and a failure to capture the extensive heterogeneity of the disease with conventional methods. Here we review the emerging roles of complex organoids in the study of SARS-CoV-2 infection, modelling of COVID-19 disease pathology and in drug, antibody and vaccine development. We discuss opportunities for COVID-19 research and remaining challenges in the application of organoids.

View Article and Find Full Text PDF

The ground or naive pluripotent state of human pluripotent stem cells (hPSCs), which was initially established in mouse embryonic stem cells (mESCs), is an emerging and tentative concept. To verify this vital concept in hPSCs, we performed a multivariate meta-analysis of major hPSC datasets via the combined analytic powers of percentile normalization, principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), and SC3 consensus clustering. This robust bioinformatics approach has significantly improved the predictive values of our meta-analysis.

View Article and Find Full Text PDF

Aim: Despite considerable efforts to reverse clinical multidrug resistance (MDR), targeting the predominant multidrug transporter ABCB1/P-glycoprotein (P-gp) using small molecule inhibitors has been unsuccessful, possibly due to the emergence of alternative drug resistance mechanisms. However, the non-specific P-gp inhibitor cyclosporine (CsA) showed significant clinical benefits in patients with acute myeloid leukemia (AML), which likely represents the only proof-of-principle clinical trial using several generations of MDR inhibitors. Nevertheless, the mutational mechanisms that may underlie unsuccessful MDR modulation by CsA are not elucidated because of the absence of CsA-relevant cellular models.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is a life-shortening genetic disease caused by mutations of CFTR, the gene encoding cystic fibrosis transmembrane conductance regulator. Despite considerable progress in CF therapies, targeting specific CFTR genotypes based on small molecules has been hindered because of the substantial genetic heterogeneity of CFTR mutations in patients with CF, which is difficult to assess by animal models in vivo. There are broadly four classes (e.

View Article and Find Full Text PDF

Neurological diseases such as Alzheimer's disease and Parkinson's disease are growing problems, as average life expectancy is increasing globally. Drug discovery for neurological disease remains a major challenge. Poor understanding of disease pathophysiology and incomplete representation of human disease in animal models hinder therapeutic drug development.

View Article and Find Full Text PDF

Personalized drug screening (PDS) of approved drug libraries enables rapid development of specific small-molecule therapies for individual patients. With a multidisciplinary team including clinicians, researchers, ethicists, informaticians and regulatory professionals, patient treatment can be optimized with greater efficacy and fewer adverse effects by using PDS as an approach to find remedies. In addition, PDS has the potential to rapidly identify therapeutics for a patient suffering from a disease without an existing therapy.

View Article and Find Full Text PDF

Use of human pluripotent stem cells (hPSCs) and their differentiated derivatives have led to recent proof-of-principle drug discoveries, defining a pathway to the implementation of hPSC-based drug discovery (hPDD). Current hPDD strategies, however, have inevitable conceptual biases and technological limitations, including the dimensionality of cell-culture methods, cell maturity and functionality, experimental variability, and data reproducibility. In this review, we dissect representative hPDD systems via analysis of hPSC-based 2D-monolayers, 3D culture, and organoids.

View Article and Find Full Text PDF

The development of mouse genetic tools has made a significant contribution to the understanding of skeletal and hematopoietic stem cell niches in bone marrow (BM). However, many experimental designs (e.g.

View Article and Find Full Text PDF

Lineage commitment and differentiation of skeletal stem cells/bone marrow stromal cells (SSCs/BMSCs, often called bone marrow-derived "mesenchymal stem/stromal" cells) offer an important opportunity to study skeletal and hematopoietic diseases, and for tissue engineering and regenerative medicine. Currently, many studies in this field have relied on cell lineage tracing methods in mouse models, which have provided a significant advancement in our knowledge of skeletal and hematopoietic stem-cell niches in bone marrow (BM). However, there is a lack of agreement in numerous fundamental areas, including origins of various BM stem-cell niches, cell identities, and their physiological roles in the BM.

View Article and Find Full Text PDF

Human pluripotent stem cells (hPSCs) represent very promising resources for cell-based regenerative medicine. It is essential to determine the biological implications of some fundamental physiological processes (such as glycogen metabolism) in these stem cells. In this report, we employ electron, immunofluorescence microscopy, and biochemical methods to study glycogen synthesis in hPSCs.

View Article and Find Full Text PDF

The expression and function of the ATP-binding cassette (ABC) transporter ABCG2 have been studied for two decades in both adult and cancer stem cells. However, this important ABC transporter has not been well characterized in human embryonic stem cells (hESCs). Studies designed to understand the role of ABCG2 in hESCs are still in their initial stages.

View Article and Find Full Text PDF

Human pluripotent stem cells (hPSCs) hold great promise for regenerative medicine and biopharmaceutical applications. Currently, optimal culture and efficient expansion of large amounts of clinical-grade hPSCs are critical issues in hPSC-based therapies. Conventionally, hPSCs are propagated as colonies on both feeder and feeder-free culture systems.

View Article and Find Full Text PDF

The ability to differentiate induced pluripotent stem cells (iPSCs) into committed skeletal progenitors could allow for an unlimited autologous supply of such cells for therapeutic uses; therefore, we attempted to create novel bone-forming cells from human iPSCs using lines from two distinct tissue sources and methods of differentiation that we previously devised for osteogenic differentiation of human embryonic stem cells, and as suggested by other publications. The resulting cells were assayed using in vitro methods, and the results were compared with those obtained from in vivo transplantation assays. Our results show that true bone was formed in vivo by derivatives of several iPSC lines, but that the successful cell lines and differentiation methodologies were not predicted by the results of the in vitro assays.

View Article and Find Full Text PDF

Human pluripotent stem cells (hPSCs) have two potentially attractive applications: cell replacement-based therapies and drug discovery. Both require the efficient generation of large quantities of clinical-grade stem cells that are free from harmful genomic alterations. The currently employed colony-type culture methods often result in low cell yields, unavoidably heterogeneous cell populations, and substantial chromosomal abnormalities.

View Article and Find Full Text PDF

Human pluripotent stem cells (hPSCs) provide powerful resources for application in regenerative medicine and pharmaceutical development. In the past decade, various methods have been developed for large-scale hPSC culture that rely on combined use of multiple growth components, including media containing various growth factors, extracellular matrices, 3D environmental cues, and modes of multicellular association. In this Protocol Review, we dissect these growth components by comparing cell culture methods and identifying the benefits and pitfalls associated with each one.

View Article and Find Full Text PDF

Much of the excitement generated by induced pluripotent stem cell technology is concerned with the possibility of disease modeling as well as the potential for personalized cell therapy. However, to pursue this it is important to understand the 'normal' pluripotent state including its inherent variability. We have performed various molecular profiling assays for 21 hESC lines and 8 hiPSC lines to generate a comprehensive snapshot of the undifferentiated state of pluripotent stem cells.

View Article and Find Full Text PDF

Regenerative medicine, relying on human embryonic stem cell (hESC) technology, opens promising new avenues for therapy of many severe diseases. However, this approach is restricted by limited production of the desired cells due to the refractory properties of hESC growth in vitro. It is further hindered by insufficient control of cellular stress, growth rates, and heterogeneous cellular states under current culture conditions.

View Article and Find Full Text PDF

The expression and function of several multidrug transporters (including ABCB1 and ABCG2) have been studied in human cancer cells and in mouse and human adult stem cells. However, the expression of ABCG2 in human embryonic stem cells (hESCs) remains unclear. Limited and contradictory results in the literature from two research groups have raised questions regarding its expression and function.

View Article and Find Full Text PDF

Multidrug transporters constitute major mechanisms of MDR in human cancers. The ABCB1 (MDR1) gene encodes a well-characterized transmembrane transporter, termed P-glycoprotein (P-gp), which is expressed in many normal human tissues and cancers. P-gp plays a major role in the distribution and excretion of drugs and is involved in intrinsic and acquired drug resistance of cancers.

View Article and Find Full Text PDF

Because melanomas are intrinsically resistant to conventional radiotherapy and chemotherapy, many alternative treatment approaches have been developed such as biochemotherapy and immunotherapy. The most common cause of multidrug resistance (MDR) in human cancers is the expression and function of one or more ATP-binding cassette (ABC) transporters that efflux anticancer drugs from cells. Melanoma cells express a group of ABC transporters (such as ABCA9, ABCB1, ABCB5, ABCB8, ABCC1, ABCC2, and ABCD1) that may be associated with the resistance of melanoma cells to a broad range of anticancer drugs and/or of melanocytes to toxic melanin intermediates and metabolites.

View Article and Find Full Text PDF

Background: Malignant melanomas are intrinsically resistant to many conventional treatments, such as radiation and chemotherapy, for reasons that are poorly understood. Here we propose and test a model that explains drug resistance or sensitivity in terms of melanosome dynamics.

Methods: The growth and sensitivity to cisplatin of MNT-1 cells, which are melanotic and enriched with mature stage III and IV melanosomes, and SK-MEL-28 cells, which have only immature stage I and II melanosomes, were compared using clonogenic assays.

View Article and Find Full Text PDF

The International Stem Cell Initiative characterized 59 human embryonic stem cell lines from 17 laboratories worldwide. Despite diverse genotypes and different techniques used for derivation and maintenance, all lines exhibited similar expression patterns for several markers of human embryonic stem cells. They expressed the glycolipid antigens SSEA3 and SSEA4, the keratan sulfate antigens TRA-1-60, TRA-1-81, GCTM2 and GCT343, and the protein antigens CD9, Thy1 (also known as CD90), tissue-nonspecific alkaline phosphatase and class 1 HLA, as well as the strongly developmentally regulated genes NANOG, POU5F1 (formerly known as OCT4), TDGF1, DNMT3B, GABRB3 and GDF3.

View Article and Find Full Text PDF