Publications by authors named "Kevin Forrest"

Aspergillosis is difficult to treat and carries a high mortality rate in immunocompromised patients. Neutrophils play a critical role in control of infection but may be diminished in number and function during immunosuppressive therapies. Here, we measure the effect of three bifunctional small molecules that target and prime neutrophils to generate a more effective response against the pathogen.

View Article and Find Full Text PDF

The contribution of human neutrophils to the protection against fungal infections by Aspergillus fumigatus is essential but not fully understood. Whereas healthy people can inhale spores of A. fumigatus without developing disease, neutropenic patients and those receiving immunosuppressive drugs have a higher incidence of invasive fungal infections.

View Article and Find Full Text PDF

Localization of bicoid mRNA to the anterior of the Drosophila oocyte is essential to produce the Bicoid protein gradient that patterns the anterior-posterior axis of the embryo. Previous studies have characterized a microtubule-dependent pathway for bicoid mRNA localization during midoogenesis, when bicoid first accumulates at the anterior. We show that the majority of bicoid is actually localized later in oogenesis, when the only known mechanism for mRNA localization is based on passive trapping.

View Article and Find Full Text PDF

Translational control of gene expression plays a fundamental role in the early development of many organisms. In Drosophila, selective translation of nanos mRNA localized to the germ plasm at the posterior of the embryo, together with translational repression of nanos in the bulk cytoplasm, is essential for development of the anteroposterior body pattern. We show that both components to spatial control of nanos translation initiate during oogenesis and that translational repression is initially independent of Smaug, an embryonic repressor of nanos.

View Article and Find Full Text PDF

Background: Localization of nanos mRNA to the posterior pole of the Drosophila embryo directs local synthesis of Nanos protein that is essential for patterning of the anterior-posterior body axis and germ cell function. While nanos RNA is synthesized by the ovarian nurse cells and appears at the posterior pole of the ooctye late in oogenesis, the mechanism by which this RNA is translocated to and anchored at the oocyte posterior is unknown.

Results: By labeling endogenous nanos RNA with GFP, we have been able to follow the dynamic pathway of nanos localization in living oocytes.

View Article and Find Full Text PDF