In this contribution we demonstrate a solid-state approach to triplet-triplet annihilation upconversion for application in a solar cell device in which absorption of near-infrared light is followed by direct electron injection into an inorganic substrate. We use time-resolved microwave photoconductivity experiments to study the injection of electrons into the electron-accepting substrate (TiO) in a trilayer device consisting of a triplet sensitizer (fluorinated zinc phthalocyanine), triplet acceptor (methyl subsituted perylenediimide), and smooth polycrystalline TiO. Absorption of light at 700 nm leads to the almost quantitative generation of triplet excited states by intersystem crossing.
View Article and Find Full Text PDFTwo of the key parameters that characterize the usefulness of organic semiconductors for organic or hybrid organic/inorganic solar cells are the mobility of charges and the diffusion length of excitons. Both parameters are strongly related to the supramolecular organization in the material. In this work we have investigated the relation between the solid-state molecular packing and the exciton diffusion length, charge carrier mobility, and charge carrier separation yield using two perylene diimide (PDI) derivatives which differ in their substitution.
View Article and Find Full Text PDFJ Phys Chem Lett
November 2019
Singlet fission (SF) involves the conversion of one excited singlet state into two lower excited triplet states and has received considerable renewed attention over the past decade. This Perspective highlights recent developments and emerging concepts of SF in solid-state crystalline materials. Recent experiments showed the crucial role of vibrational modes in speeding up SF, and theoretical modeling has started to define an optimal energetic landscape and intermolecular orientation of chromophores for highly efficient singlet fission.
View Article and Find Full Text PDFPerylene diimides (PDIs) are attractive chromophores that exhibit singlet exciton fission (SF) and have several advantages over traditional SF molecules such as tetracene and pentacene; however, their photophysical properties relating to SF have received only limited attention. In this study, we explore how introduction of bulky bromine atoms in the so-called bay-area PDIs, resulting in a nonplanar structure, affects the solid-state packing and efficiency of singlet fission. We found that changes in the molecular packing have a strong effect on the temperature dependent photoluminescence, expressed as an activation energy.
View Article and Find Full Text PDFAlthough the spatiotemporal structure of the genome is crucial to its biological function, many basic questions remain unanswered on the morphology and segregation of chromosomes. Here, we experimentally show in Escherichia coli that spatial confinement plays a dominant role in determining both the chromosome size and position. In non-dividing cells with lengths increased to 10 times normal, single chromosomes are observed to expand > 4-fold in size.
View Article and Find Full Text PDFPerylene diimides are conjugated chromophores that are of considerable interest owing to their ability to transform a singlet excited state into two triplets by singlet fission. Although singlet fission has previously been reported for certain perylene diimide derivatives, there is some uncertainty about the rates and yield of the process in these materials. In this report, ultrafast transient absorption spectroscopy is used to demonstrate that singlet fission in perylene diimides can occur on a sub-picosecond timescale with quantum yields approaching the theoretical limit of 200 %.
View Article and Find Full Text PDF