Publications by authors named "Kevin Englehart"

In the field of EMG-based force modeling, the ability to generalize models across individuals could play a significant role in its adoption across a range of applications, including assistive devices, robotic and rehabilitation devices. However, current studies have predominately focused on intra-subject modeling, largely neglecting the burden of end-user data acquisition. In this work, we propose the use of transfer learning (TL) to generalize force modeling to a new user by first establishing a baseline model trained using other users' data, and then adapting to the end-user using a small amount of new data (only 10% , 20% , and 40% of the new user data).

View Article and Find Full Text PDF

Studies have shown that closed-loop myoelectric control schemes can lead to changes in user performance and behavior compared to open-loop systems. When users are placed within the control loop, such as during real-time use, they must correct for errors made by the controller and learn what behavior is necessary to produce desired outcomes. Augmented feedback, consequently, has been used to incorporate the user throughout the training process and to facilitate learning.

View Article and Find Full Text PDF

Efficient storage and transmission of electromyogram (EMG) data are important for emerging applications such as telemedicine and big data, as a vital tool for further advancement of the field. However, due to limitations in internet speed and hardware resources, transmission and storage of EMG data are challenging. As a solution, this work proposes a new method for EMG data compression using deep convolutional autoencoders (CAE).

View Article and Find Full Text PDF

Pattern recognition techniques leveraging the use of electromyography signals have become a popular approach to provide intuitive control of myoelectric devices. Performance of these control interfaces is commonly quantified using offline classification accuracy, despite studies having shown that this metric is a poor indicator of usability. Researchers have identified alternative offline metrics that better correlate with online performance; however, the relationship has yet to be fully defined in the literature.

View Article and Find Full Text PDF

When a person makes a movement, a motor error is typically observed that then drives motor planning corrections on subsequent movements. This error correction, quantified as a trial-by-trial adaptation rate, provides insight into how the nervous system is operating, particularly regarding how much confidence a person places in different sources of information such as sensory feedback or motor command reproducibility. Traditional analysis has required carefully controlled laboratory conditions such as the application of perturbations or error clamping, limiting the usefulness of motor analysis in clinical and everyday environments.

View Article and Find Full Text PDF

Recent developments in implantable technology, such as high-density recordings, wireless transmission of signals to a prosthetic hand, may pave the way for intramuscular electromyography (iEMG)-based myoelectric control in the future. This study aimed to investigate the real-time control performance of iEMG over time. A novel protocol was developed to quantify the robustness of the real-time performance parameters.

View Article and Find Full Text PDF

An important barrier to commercialization of pattern recognition myoelectric control of prostheses is the lack of robustness to confounding factors such as electrode shift, skin impedance variations, and learning effects. To overcome this challenge, a novel supervised adaptation approach based on transfer learning (TL) with convolutional neural networks (CNNs) is proposed which requires only a short training session (a few seconds for each class) to recalibrate the system. TL is proposed as a solution to the problem of insufficient calibration data due to short training times for both classification and regression-based control schemes.

View Article and Find Full Text PDF

Pattern recognition based myoelectric control has been widely explored in the field of prosthetics, but little work has extended to other patient groups. Individuals with neurological injuries such as spinal cord injury may also benefit from more intuitive control that may facilitate more interactive treatments or improved control of functional electrical stimulation (FES) systems or assistive technologies. This work presents a pilot study with 10 individuals with cervical spinal cord injury between A and C on the American Spinal Injury Association Impairment Scale.

View Article and Find Full Text PDF

Humans consistently coordinate their joints to perform a variety of tasks. Computational motor control theory explains these stereotypical behaviors using optimal control. Several cost functions have been used to explain specific movements, which suggests that the brain optimizes for a combination of costs and just varies their relative weights to perform different tasks.

View Article and Find Full Text PDF

Objective: Deep learning models can learn representations of data that extract useful information in order to perform prediction without feature engineering. In this paper, an electromyography (EMG) control scheme with a regression convolutional neural network (CNN) is proposed as a substitute of conventional regression models that use purposefully designed features.

Approach: The usability of the regression CNN model is validated for the first time, using an online Fitts' law style test with both individual and simultaneous wrist motions.

View Article and Find Full Text PDF

Objective: Force myography (FMG), which measures the surface pressure profile exerted by contracting muscles, has been proposed as an alternative to electromyography (EMG) for human-machine interfaces. Although FMG pattern recognition-based control systems have yielded higher offline classification accuracy, comparatively few works have examined the usability of FMG for real-time control. In this work, we conduct a comprehensive comparison of EMG- and FMG-based schemes using both classification and regression controllers.

View Article and Find Full Text PDF

Research on human motor adaptation has often focused on how people adapt to self-generated or externally-influenced errors. Trial-by-trial adaptation is a person's response to self-generated errors. Externally-influenced errors applied as catch-trial perturbations are used to calculate a person's perturbation adaptation rate.

View Article and Find Full Text PDF

Objective: Real-time myoelectric experimental protocol is considered as a means to quantify usability of myoelectric control schemes. While usability should be considered over time to assure clinical robustness, all real-time studies reported thus far are limited to a single session or day and thus the influence of time on real-time performance is still unexplored. In this study, the aim was to develop a novel experimental protocol to quantify the effect of time on real-time performance measures over multiple days using a Fitts' law approach.

View Article and Find Full Text PDF

In myoelectric pattern-recognition control, the rejection of movement decisions based on confidence - the likelihood of a correct classification - has been shown to improve system usability, however it is not known to what extent this is due directly to error mitigation, and to what extent this is due to users having opportunities to change the way they contract. To understand this, 24 subjects participated in a real-time pattern recognition control task with rejection at seven different confidence thresholds, and without rejection. Errors were classified into systemic errors (i.

View Article and Find Full Text PDF

Rejection of movements based on the confidence in the classification decision has previously been demonstrated to improve the usability of pattern recognition based myoelectric control. To this point, however, the optimal rejection threshold has been determined heuristically, and it is not known how different thresholds affect the tradeoff between error mitigation and false rejections in real-time closed-loop control. To answer this question, 24 able-bodied subjects completed a real-time Fitts' law-style virtual cursor control task using a support vector machine classifier.

View Article and Find Full Text PDF

The evolution of deep learning techniques has been transformative as they have allowed complex mappings to be trained between control inputs and outputs without the need for feature engineering. In this work, a myoelectric control system based on convolutional neural networks (CNN) is proposed as a possible alternative to traditional approaches that rely on specifically designed features. This CNN-based system is validated using a real-time Fitts' law style target acquisition test requiring single and combined wrist motions.

View Article and Find Full Text PDF

Currently, most of the adopted myoelectric schemes for upper limb prostheses do not provide users with intuitive control. Higher accuracies have been reported using different classification algorithms but investigation on the reliability over time for these methods is very limited. In this study, we compared for the first time the longitudinal performance of selected state-of-the-art techniques for electromyography (EMG) based classification of hand motions.

View Article and Find Full Text PDF

Objective: Force myography (FMG) has been shown to be a potentially higher accuracy alternative to electromyography for pattern recognition based prosthetic control. Classification accuracy, however, is just one factor that affects the usability of a control system. Others, like the ability to start and stop, to coordinate dynamic movements, and to control the velocity of the device through some proportional control scheme can be of equal importance.

View Article and Find Full Text PDF

While several studies have demonstrated the short-term performance of pattern recognition systems, long-term investigations are very limited. In this study, we investigated changes in classification performance over time. Ten able-bodied individuals and six amputees took part in this study.

View Article and Find Full Text PDF

Understanding the stereotypical characteristics of human movement can better inform rehabilitation practices by providing a template of healthy and expected human motor control. Multiplicative noise is inherent in goal-directed movement, such as reaching to grasp an object. Multiplicative noise plays an important role in computational motor control models to help support phenomena such as stereotypical kinematic profiles in time-constrained and unconstrained tasks.

View Article and Find Full Text PDF

Several multiple degree-of-freedom upper-limb prostheses that have the promise of highly dexterous control have recently been developed. Inadequate controllability, however, has limited adoption of these devices. Introducing more robust control methods will likely result in higher acceptance rates.

View Article and Find Full Text PDF

Objective: For over two decades, Hudgins' set of time domain features have extensively been applied for classification of hand motions. The calculation of slope sign change and zero crossing features uses a threshold to attenuate the effect of background noise. However, there is no consensus on the optimum threshold value.

View Article and Find Full Text PDF

Control of human-machine interfaces are well modeled by computational control models, which take into account the behavioral decisions people make in estimating task dynamics and state for a given control law. This control law is optimized according to a cost function, which for the sake of mathematical tractability is typically represented as a series of quadratic terms. Recent studies have found that people actually use cost functions for reaching tasks that are slightly different than a quadratic function, but it is unclear which of several cost functions best explain human behavior and if these cost functions generalize across tasks of similar nature but different scale.

View Article and Find Full Text PDF

One of the hottest topics in rehabilitation robotics is that of proper control of prosthetic devices. Despite decades of research, the state of the art is dramatically behind the expectations. To shed light on this issue, in June, 2013 the first international workshop on Present and future of non-invasive peripheral nervous system (PNS)-Machine Interfaces (MI; PMI) was convened, hosted by the International Conference on Rehabilitation Robotics.

View Article and Find Full Text PDF

Previous studies on intramuscular EMG based control used offline data analysis. The current study investigates the usability of intramuscular EMG in two degree-of-freedom using a Fitts' Law approach by combining classification and proportional control to perform a task, with real time feedback of user performance. Nine able-bodied subjects participated in the study.

View Article and Find Full Text PDF