Background: Pregnancy is associated with many rapid biological adaptations that support healthy development of the growing fetus. One of which is critical to fetal health and development is the coordination between maternal liver derived substrates and vascular delivery. This crucial adaptation can be potentially derailed by inhalation of toxicants.
View Article and Find Full Text PDFMaternal inhalation exposure to engineered nanomaterials (ENM) has been associated with microvascular dysfunction and adverse cardiovascular responses. Pregnancy requires coordinated vascular adaptation and growth that are imperative for survival. Key events in pregnancy hallmark distinct periods of gestation such as implantation, spiral artery remodeling, placentation, and trophoblast invasion.
View Article and Find Full Text PDFIt is generally accepted that gestational xenobiotic exposures result in systemic consequences in the adult F1 generation. However, data on detailed behavioral and cognitive consequences remain limited. Using our whole-body nanoparticle inhalation facility, pregnant Sprague-Dawley rats (gestational day [GD] 7) were exposed 4 d/wk to either filtered air (control) or nano-titanium dioxide aerosols (nano-TiO2; count median aerodynamic diameter of 170.
View Article and Find Full Text PDFObjective: The continued development and use of engineered nanomaterials (ENM) has given rise to concerns over the potential for human health effects. Although the understanding of cardiovascular ENM toxicity is improving, one of the most complex and acutely demanding "special" circulations is the enhanced maternal system to support fetal development. The Barker hypothesis proposes that fetal development within a hostile gestational environment may predispose/program future sensitivity.
View Article and Find Full Text PDFRecent studies show nitric oxide (NO) deficiency is both a cause and consequence of chronic kidney disease (CKD). Reduced renal neuronal NO synthase (nNOS) abundance and activity parallel development of CKD with different models in the Sprague-Dawley (SD) rats, whereas Wistar Furth (WF) rats are protected against CKD and show preserved renal NO production. In this study, we compared renal NO in response to DOCA/salt-induced injury between the WF and SD.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
July 2004
The Wistar-Furth (WF) rat is protected against chronic renal disease (CRD) following 5/6th ablation/infarction vs. the Sprague-Dawley (SD) rat, and protection was associated with preserved renal nitric oxide (NO) production. This study examined CRD induced with repeated administration of puromycin aminonucleoside (PAN).
View Article and Find Full Text PDFThe inbred obese Zucker (ZDF/Gmi, fa/fa) rat develops severe hyperglycemia and also exhibits severe renal disease. In this study, we compared the relative benefits of long-term treatment with angiotensin-converting enzyme inhibition (ACEI) to a peroxisome proliferator-activated receptor gamma (PPARgamma) agonist. Four groups of obese inbred Zucker rats were studied over a 6-month observation period; untreated animals, rats treated with ACEI alone, rats treated with PPARgamma agonist alone, and rats treated with a combination of ACEI and PPARgamma agonist.
View Article and Find Full Text PDF