This work presents a thorough characterization of Helaina recombinant human lactoferrin (rhLF, Effera™) expressed in a yeast system at an industrial scale for the first time. Proteomic analysis confirmed that its amino acid sequence is identical to that of native human LF. N-linked glycans were detected at three known glycosylation sites, namely, Asparagines-156, -497, and -642 and they were predominantly oligomannose structures having five to nine mannoses.
View Article and Find Full Text PDFEnzymes that regulate the degree of histone H3 lysine 4 (H3K4) methylation are crucial for proper cellular differentiation and are frequently mutated in cancer. The Mixed lineage leukemia (MLL) family of enzymes deposit H3K4 mono-, di-, or trimethylation at distinct genomic locations, requiring precise spatial and temporal control. Despite evidence that the degree of H3K4 methylation is controlled in part by a hierarchical assembly pathway with key subcomplex components, we previously found that the assembled state of the MLL1 core complex is not favored at physiological temperature.
View Article and Find Full Text PDFPost-translational modifications (PTMs) are reversible chemical modifications that can modulate protein structure and function. Methylation and acetylation are two such PTMs with integral and well-characterized biological roles, including modulation of chromatin structure; and unknown or poorly understood roles, exemplified by the influence of these PTMs on transcription factor structure and function. The need for biological insights into the function of these PTMs motivates the development of a nondestructive and label-free method that enables pursuit of molecular mechanisms.
View Article and Find Full Text PDFIn nucleosomes, histone N-terminal tails exist in dynamic equilibrium between free/accessible and collapsed/DNA-bound states. The latter state is expected to impact histone N-termini availability to the epigenetic machinery. Notably, H3 tail acetylation (e.
View Article and Find Full Text PDFEnzymes of the mixed lineage leukemia (MLL) family of histone H3 lysine 4 (H3K4) methyltransferases are critical for cellular differentiation and development and are regulated by interaction with a conserved subcomplex consisting of WDR5, RbBP5, Ash2L, and DPY30. While pairwise interactions between complex subunits have been determined, the mechanisms regulating holocomplex assembly are unknown. In this investigation, we systematically characterized the biophysical properties of a reconstituted human MLL1 core complex and found that the MLL1-WDR5 heterodimer interacts with the RbBP5-Ash2L-DPY30 subcomplex in a hierarchical assembly pathway that is highly dependent on concentration and temperature.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2022
The human Mixed Lineage Leukemia-1 (MLL1) complex methylates histone H3K4 to promote transcription and is stimulated by monoubiquitination of histone H2B. Recent structures of the MLL1-WRAD core complex, which comprises the MLL1 methyltransferase, DR5, bBp5, sh2L, and PY-30, have revealed variability in the docking of MLL1-WRAD on nucleosomes. In addition, portions of the Ash2L structure and the position of DPY30 remain ambiguous.
View Article and Find Full Text PDFMost of the world's biodiversity lives in cold (-2° to 4°C) and hypersaline environments. To understand how cells adapt to such conditions, we isolated two key components of the transcription machinery from fungal species that live in extreme polar environments: the Ess1 prolyl isomerase and its target, the carboxy-terminal domain (CTD) of RNA polymerase II. Polar Ess1 enzymes are conserved and functional in the model yeast, By contrast, polar CTDs diverge from the consensus (YSPTSPS) and are not fully functional in .
View Article and Find Full Text PDFPost-translational modification (PTM) of proteins is of critical importance to the regulation of many cellular processes in eukaryotic organisms. One of the most well-studied protein PTMs is methylation, wherein an enzyme catalyzes the transfer of a methyl group from a cofactor to a lysine or arginine side chain. Lysine methylation is especially abundant in the histone tails and is an important marker for denoting active or repressed genes.
View Article and Find Full Text PDFIntrinsically disordered protein (IDP) sequences often contain a high proportion of charged residues in conjunction with their high degree of hydrophilicity and solvation. For high net charge IDPs, long-range electrostatic interactions are thought to play a role in modulating the strength or kinetics of protein-protein interactions. In this work, we examined intramolecular interactions mediated by charged regions of a model IDP, the C-terminal tail of the phosphatase Fcp1.
View Article and Find Full Text PDFAccurate gene transcription in eukaryotes depends on isomerization of serine-proline bonds within the carboxy-terminal domain (CTD) of RNA polymerase II. Isomerization is part of the "CTD code" that regulates recruitment of proteins required for transcription and co-transcriptional RNA processing. Saccharomyces cerevisiae Ess1 and its human ortholog, Pin1, are prolyl isomerases that engage the long heptad repeat (YSPTSPS) of the CTD by an unknown mechanism.
View Article and Find Full Text PDF