Publications by authors named "Kevin E O'Shea"

Natural organic matter (NOM) plays a critical role in the mobilization and bioavailability of metals and metalloids in the aquatic environment. Selenium (Se), an environmental contaminant of aquatic systems, has drawn increasing attention over the years. While Se is a vital micronutrient to human beings, animals and plants, excess Se intake may pose serious long-term risks.

View Article and Find Full Text PDF

Uranium (U) waste, generated at a variety of mines and nuclear production sites, migrates in the subsurface, posing a serious threat to contaminate groundwater systems. In this study, batch equilibrium and kinetic experiments, geochemical modeling and solid phase characterization were conducted to investigate the impact of Cr(VI), a common co-contaminant, on the adsorption of U(VI) to quartz, plagioclase feldspar, and carbonate-dominated sediment (≤2 mm). Batch experiments were performed under slightly alkaline conditions (7.

View Article and Find Full Text PDF

Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are often referred to as legacy perfluoroalkyl substances (PFAS). Human exposure to PFAS leads to severe negative health impacts including cancers, infertility, and dysfunction in the kidneys. Steady-state absorbance, fluorescence, and circular dichroism (CD) methods were used to study the interactions between PFOA and Hb.

View Article and Find Full Text PDF

The presence of cylindrospermopsin (CYN), a potent cyanotoxin, in drinking water sources poses a tremendous risk to humans and the environment. Detailed kinetic studies herein demonstrate ferrate(VI) (FeO, Fe(VI)) mediated oxidation of CYN and the model compound 6-hydroxymethyl uracil (6-HOMU) lead to their effective degradation under neutral and alkaline solution pH. A transformation product analysis indicated oxidation of the uracil ring, which has functionality critical to the toxicity of CYN.

View Article and Find Full Text PDF

Perfluoroalkyl carboxylic acids (PFCAs) are persistent and ubiquitous pollutants. Environmental remediation is often achieved by absorption on matrices followed by high-temperature thermal treatment to desorb and decompose the PFCAs. Detailed product studies of the thermal degradation of PFCAs have been hampered by the complex nature of product mixtures and associated analytical challenges.

View Article and Find Full Text PDF

Studies related to advanced reduction technologies (ARTs) have grown exponentially since the term was first coined in 2013. Despite recent interests in ARTs, the conditions and requirements for these processes have yet to be defined and clarifed. In comparision to well defined advanced oxidation technologies/processes (AOTs/AOPs) which involve the generation of hydroxyl radical as the common characteristic, ARTs function by electron donation from a variety of reducing agents and activators.

View Article and Find Full Text PDF

The presence of per and poly-fluoroalkyl substances (PFAS), commonly referred to as forever chemicals, in aquatic systems is a serious global health problem. While the remediation of PFAS from aqueous media has been extensively investigated, their interactions with and removal from biological systems have received far less attention. We report herein structural alterations to human serum albumin (HSA) upon addition of perfluoro(2-methyl-3-oxahexanoic) acid (Gen X) monitored by changes to the fluorescence and circular dichroism (CD) spectra of HSA.

View Article and Find Full Text PDF

Cationic dyes exist in various industrial wastewaters and removal prior to discharge is necessary due to their carcinogenic behavior which poses a serious threat to human health. Iron based humic acid coated magnetic nanoparticles (HA-MNPs) were evaluated for the removal of 2-[4-(dimethylamino) styryl]-1-methylpyridinium iodide (2-ASP) as a model compound for cationic styryl pyridinium dyes from aqueous media. HA-MNPs were prepared by co-precipitation and characterized.

View Article and Find Full Text PDF

The rapid and selective peroxymonosulfate (PMS) induced transformation of H-antihistamines cetirizine (CET) and diphenhydramine (DPH) can be influenced by the presence of common organic and inorganic water constituents. Presence of HCO and/or CO, which often exhibit powerful inhibition on the advanced oxidation processes (AOPs), can enhance the PMS mediated transformation of CET/DPH. The observed promotion is demonstrated by the changed solution pH through detailed kinetic studies.

View Article and Find Full Text PDF

With growing interest in advanced oxidation processes (AOPs), the number of research studies on peroxymonosulfate (PMS) mediated pollutant degradation has increased significantly due to its high radical generation potential upon activation. However, rare studies have focused on the non-radical based PMS reactions. In this study, degradation of model H-antihistamines cetirizine (CET) and diphenhydramine (DPH) by unactivated PMS was investigated.

View Article and Find Full Text PDF

Owing to environmental health concerns, a number of per- and polyfluoroalkyl substances (PFAS) have been phased-out, and increasingly replaced by various chemical analogs. Most prominent among these replacements are numerous perfluoroether carboxylic acids (PFECA). Toxicity, and environmental health concerns associated with these next-generation PFAS, however, remains largely unstudied.

View Article and Find Full Text PDF

Domoic acid (DA), a potent marine toxin, is readily oxidized upon reaction with singlet oxygen (O). Detailed product studies revealed that the major singlet oxygenation reaction pathways were the [2 + 2] cycloaddition (60.2%) and ene reactions (39.

View Article and Find Full Text PDF

Perfluorooctanoic acid (PFOA), a persistent organic pollutant known to cause adverse health effects, strongly binds to human serum albumin (HSA). β-Cyclodextrin (β-CD), a nontoxic cyclic sugar, strongly complexes PFOA in a host-guest complex and has been proposed for environmental remediation of PFOA. The interactions between HSA, PFOA, and β-CD were investigated in order to determine if β-CD can reverse the binding of PFOA to HSA, with potential therapeutic applications toward exposure to PFOA.

View Article and Find Full Text PDF

Perfluorooctanoic acid (PFOA) has been linked to negative health outcomes including cancer, thyroid disease, infertility, and developmental delays. β-Cyclodextrin (β-CD), a cyclic sugar, has been previously shown to form strong host-guest complexes with PFOA, and is proposed as a means of environmental remediation with respect to this widespread contaminant. In the present study, β-CD was directly examined with regards to possible attenuation of the toxicity of PFOA specifically employing the zebrafish () embryo model.

View Article and Find Full Text PDF

Legacy perfluoroalkyl substances (PFASs) are known environmental pollutants with serious adverse health effects. Perfluoroethercarboxylic acids (PFECAs), emerging PFASs now being substituted for legacy PFASs, have recently been detected in the environment. Cyclodextrins (CDs) have been proposed as agents for the remediation of problematic pollutants, including legacy PFASs.

View Article and Find Full Text PDF

Effective removal of excess phosphate from water is critical to counteract eutrophication and restore water quality. In this study, low cost, environmentally friendly humic acid coated magnetite nanoparticles (HA-MNP) were synthesized and applied for the remediation of phosphate from aqueous media. The HA-MNPs, characterized by FTIR, TEM and HAADF-STEM showed the extensive coating of humic acid on the magnetite surface.

View Article and Find Full Text PDF

A large spill of 4-methylcyclohexanemethanol (MCHM) and propylene glycol phenyl ether (PPh) into the Elk River near Charleston, West Virginia on January 9, 2014 led to serious water contamination and public concerns about appropriate remediation. To assess the feasibility of advanced oxidation processes (AOPs) for remediation of waters contaminated with these compounds, we induced hydroxyl radical (HO˙) reactions using time-resolved and steady-state radiolysis methods. Detailed product analyses showed initial HO˙ attack was at the benzene ring of PPh, and occurred through H-atom abstraction reactions for MCHM.

View Article and Find Full Text PDF

Perfluorochemicals (PFCs) are contaminants of serious concern because of their toxicological properties, widespread presence in drinking water sources, and incredible stability in the environment. To assess the potential application of α-, β-, and γ-cyclodextrins for PFC remediation, we investigated their complexation with linear fluorinated carboxylic acids, sulfonates, and a sulfonamide with carbon backbones ranging from C4-C9. F Nuclear Magnetic Resonance (NMR) spectroscopy studies demonstrated β-CD formed the strongest complexes with these PFCs.

View Article and Find Full Text PDF

Ultrasonic irradiation (640 kHz) leads to the effective degradation of 5-methyl-benzotriazole (5-MBT) in O2 saturated aqueous solution. Up to 97% of 5-MBT is eliminated within 2h of treatment. Upon extended treatment of 6h, UV absorbance of the n→π(∗) and π→π(∗) transitions associated with aromatic and conjugated systems are completely removed, indicating complete destruction of the aromatic system in 5-MBT.

View Article and Find Full Text PDF

Aminoglycoside antibiotics are widely used in human therapy and veterinary medicine. We report herein a detailed study on the natural-organic-matter- (NOM-) photosensitized degradation of aminoglycosides in aqueous media under simulated solar irradiation. It appears that the direct reaction of the excited states of NOM ((3)NOM*) with aminoglycosides is minor.

View Article and Find Full Text PDF

Cylindrospermopsin (CYN) is a potent toxic alkaloid produced by a number of cyanobacteria frequently found in lakes and reservoirs used as drinking water sources. We report for the first time detailed pathways for the degradation of CYN by treatment with ozone. This was accomplished by use of ultra-high-performance liquid chromatography (UHPLC)-quadrupole time-of-flight mass spectrometry (QTOF MS), which revealed that CYN is readily degraded by ozone with at least 36 transformation products.

View Article and Find Full Text PDF

Visible light (VIS) photocatalysis has large potential as a sustainable water treatment process, however the reaction pathways and degradation processes of organic pollutants are not yet clearly defined. The presence of cyanobacteria cause water quality problems since several genera can produce potent cyanotoxins, harmful to human health. In addition, cyanobacteria produce taste and odor compounds, which pose serious aesthetic problems in drinking water.

View Article and Find Full Text PDF

In recent years, the area of developing visible-light-active photocatalysts based on titanium dioxide has been enormously investigated due to its wide range of applications in energy and environment related fields. Various strategies have been designed to efficiently utilize the solar radiation and to enhance the efficiency of photocatalytic processes. Building on the fundamental strategies to improve the visible light activity of TiO2-based photocatalysts, this Perspective aims to give an insight into many contemporary developments in the field of visible-light-active photocatalysis.

View Article and Find Full Text PDF

This study investigated the mechanistic effects of basic pH and the presence of high carbonate concentration on the TiO2 photocatalytic degradation of the cyanobacterial toxin cylindrospermopsin (CYN). High-performance liquid chromatography combined with quadrupole time-of-flight electrospray ionization tandem mass spectrometry (LC/Q-TOF-ESI-MS) was employed for the identification of reaction byproducts. The reaction pathways were proposed based on the identified degradation byproducts and radical chemistry.

View Article and Find Full Text PDF

The highly toxic Cr(VI) is a critical component in the Chromated Copper Arsenate (CCA) formulations extensively employed as wood preservatives. Remediation of CCA mixed waste and discarded treated wood products is a significant challenge. We demonstrate that UV/TiO2 photocatalysis effectively reduces Cr(VI) to less toxic Cr(III) in the presence of arsenate, As(V), and copper, Cu(II).

View Article and Find Full Text PDF