Acute lymphoblastic leukemia (ALL) is the most common cause of cancer-related death in children. Despite significantly increased chances of cure, especially for high-risk ALL patients, it still represents a poor prognosis for a substantial fraction of patients. Misregulated proteins in central switching points of the cellular signaling pathways represent potentially important therapeutic targets.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2014
Differentiation arrest is a hallmark of acute leukemia. Genomic alterations in B cell differentiation factors such as PAX5, IKZF1, and EBF-1 have been identified in more than half of all cases of childhood B precursor acute lymphoblastic leukemia (ALL). Here, we describe a perturbed epigenetic and transcriptional regulation of ZNF423 in ALL as a novel mechanism interfering with B cell differentiation.
View Article and Find Full Text PDFGlobal monitoring of cellular signaling activity is of great importance for the understanding of the regulation of complex signaling networks and the characterization of signaling pathways deregulated in diseases. Tyrosine phosphorylation of intracellular signaling proteins followed by the recognition and binding of Src homology 2 (SH2) domains are key mechanisms in the downstream transmission of many important biological signals. SH2 domains, comprising 120 members in humans, are small modular protein binding domains that recognize tyrosine phosphorylated signaling proteins with high specificity.
View Article and Find Full Text PDFProtein tyrosine phosphorylation controls many aspects of signaling in multicellular organisms. One of the major consequences of tyrosine phosphorylation is the creation of binding sites for proteins containing Src homology 2 (SH2) domains. To profile the global tyrosine phosphorylation state of the cell, we have developed proteomic binding assays encompassing nearly the full complement of human SH2 domains.
View Article and Find Full Text PDFDeciphering global signaling networks is of great importance for the detailed understanding of cellular signaling processes controlling many important biological functions. Among signaling processes, tyrosine phosphorylation has a central role. At present, adequate techniques for the global characterization of the tyrosine phosphoproteome are lacking, particularly for the analysis of small amounts of protein.
View Article and Find Full Text PDF