Real world networks contain multiple layers of links whose interactions can lead to extraordinary collective dynamics, including synchronization. The fundamental problem of assessing how network topology controls synchronization in multilayer networks remains open due to serious limitations of the existing stability methods. Towards removing this obstacle, we propose an approximation method which significantly enhances the predictive power of the master stability function for stable synchronization in multilayer networks.
View Article and Find Full Text PDFThe pedestrian-induced instability of the London Millennium Bridge is a widely used example of Kuramoto synchronisation. Yet, reviewing observational, experimental, and modelling evidence, we argue that increased coherence of pedestrians' foot placement is a consequence of, not a cause of the instability. Instead, uncorrelated pedestrians produce positive feedback, through negative damping on average, that can initiate significant lateral bridge vibration over a wide range of natural frequencies.
View Article and Find Full Text PDFSignificance: Real-time information about oxygen delivery to the hepatic graft is important to direct care and diagnose vascular compromise in the immediate post-transplant period.
Aim: The current study was designed to determine the utility of visible diffuse reflectance spectroscopy (vis-DRS) for measuring liver tissue saturation in vivo.
Approach: A custom-built vis-DRS probe was calibrated using phantoms with hemoglobin (Hb) and polystyrene microspheres.
Our objective was to assess the effect of nitric oxide added to the sweep gas of the oxygenator during cardiopulmonary bypass (CPB) in infants on platelet count, platelet function, clinical outcomes, and safety. A randomized, double-blinded, placebo-controlled clinical trial in infants less than a year of age undergoing cardiac surgery requiring CPB was undertaken. Nitric oxide at a dose of 20 ppm was added to the sweep gas in the treatment group.
View Article and Find Full Text PDFThe understanding of how synchronization in directed networks is influenced by structural changes in network topology is far from complete. While the addition of an edge always promotes synchronization in a wide class of undirected networks, this addition may impede synchronization in directed networks. In this paper, we develop the augmented graph stability method, which allows for explicitly connecting the stability of synchronization to changes in network topology.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
June 2017
Synchronized cortical activities in the central nervous systems of mammals are crucial for sensory perception, coordination and locomotory function. The neuronal mechanisms that generate synchronous synaptic inputs in the neocortex are far from being fully understood. In this paper, we study the emergence of synchronization in networks of bursting neurons as a highly non-trivial, combined effect of electrical and inhibitory connections.
View Article and Find Full Text PDF