AbstractAs plant-microbe interactions are both ubiquitous and critical in shaping plant fitness, patterns of plant adaptation to their local environment may be influenced by these interactions. Identifying the contribution of soil microbes to plant adaptation may provide insight into the evolution of plant traits and their microbial symbioses. To this end, we assessed the contribution of soil microbes to plant salinity adaptation by growing 10 populations of , collected from habitats differing in their salinity, in the greenhouse under either high-salinity or nonsaline conditions and with or without soil microbial partners.
View Article and Find Full Text PDFWhile a plant's microbiome can facilitate adaptive phenotypes, the plant's role in selecting for these microbes is unclear. Do plants actively recruit microbes beneficial to their current environment, or are beneficial microbes only an incidental by-product of microbial adaptation? We addressed these questions through a multigeneration greenhouse experiment, selecting for either dry- or wet-adapted soil microbial communities, either with or without plants. After three plant generations, we conducted a full reciprocal transplant of each soil community onto wet- and dry-treated plants.
View Article and Find Full Text PDFWe tested two hypotheses concerning the dynamics of intestinal microbial communities of young mice following antibiotic-induced disturbance. The first is that disturbance of the bacterial community causes disturbance of the fungal community. Our results were consistent with that hypothesis.
View Article and Find Full Text PDFBecause of disturbance and plant species loss at the local level, many arid ecosystems in the western USA benefit from revegetation. There is a growing interest in improving revegetation success by purposefully inoculating revegetation plants with mutualistic endophytic fungi that increase plant stress tolerance. However, inoculant fungi must compete against fungi that indigenous to the habitat, many of which may not be mutualistic.
View Article and Find Full Text PDFThe assembly of horizontally transmitted endophytic fungi within plant tissues may be affected by "biotic filtering". In other words, only particular endophytic fungal taxa from the available inoculum pool may be able to colonize a given plant species. We tested that hypothesis in Bromus tectorum, an important invasive species in the arid, western United States.
View Article and Find Full Text PDF