Publications by authors named "Kevin Chesmore"

Muscle damage and fibro-fatty replacement of skeletal muscles is a main pathologic feature of Duchenne muscular dystrophy (DMD) with more proximal muscles affected earlier and more distal affected later in the disease course, suggesting that different skeletal muscle groups possess distinctive characteristics that influence their susceptibility to disease. To explore transcriptomic factors driving differential gene expression and modulating DMD skeletal muscle severity, we characterized the transcriptome of vastus lateralis (VL), a more proximal and susceptible muscle, relative to tibialis anterior (TA), a more distal and protected muscle, in 15 healthy individuals using bulk RNA sequencing to identify gene expression differences that may mediate their relative susceptibility to damage with loss of dystrophin. Matching single nuclei RNA sequencing data was generated for 3 of the healthy individuals, to infer cell composition in the bulk RNA sequencing dataset and to improve mapping of differentially expressed genes to their cell source of expression.

View Article and Find Full Text PDF

In Duchenne muscular dystrophy, dystrophin loss leads to chronic muscle damage, dysregulation of repair, fibro-fatty replacement, and weakness. We develop methodology to efficiently isolate individual nuclei from minute quantities of frozen skeletal muscle, allowing single nuclei sequencing of irreplaceable archival samples and from very small samples. We apply this method to identify cell and gene expression dynamics within human DMD and mdx mouse muscle, characterizing effects of dystrophin rescue by exon skipping therapy at single nuclei resolution.

View Article and Find Full Text PDF

Objective: Premature aging and short telomere lengths of fetal tissues are associated with spontaneous preterm labor (PTL) and preterm premature rupture of membranes (pPROM). Maintenance of telomere length is performed by the enzyme telomerase. Human telomerase reverse transcriptase (hTERT) is a subunit of telomerase, and its dysfunction affects telomere shortening.

View Article and Find Full Text PDF

Pleiotropy has long been thought to be a common phenomenon in the human genome; however, until recently appropriate data was unavailable to test this hypothesis. Prior studies focused on assessing the prevalence of pleiotropy in only small subsets of phenotypes (≤ 53 phenotypes), without a truly comprehensive assessment of pleiotropy in the human genome. In this study, we determined the prevalence of pleiotropy, using the entire GWAS catalog (1094 disease phenotypes, 14,459 genes), as well as investigate the relationship between the degree of pleiotropy and the average effect size for each associating gene.

View Article and Find Full Text PDF

Pleiotropy has been claimed to constrain gene evolution but specific mechanisms and extent of these constraints have been difficult to demonstrate. The expansion of molecular data makes it possible to investigate these pleiotropic effects. Few classes of genes have been characterized as intensely as human transcription factors (TFs).

View Article and Find Full Text PDF

While the American horseshoe crab, Limulus polyphemus, has robust circadian and circatidal rhythms, virtually nothing is known about the molecular basis of these rhythms in this species or any other chelicerate. In this study, next generation sequencing was used to assemble transcriptomic reads and then putative homologs of known core and accessory circadian genes were identified in these databases. Homologous transcripts were discovered for one circadian clock input gene, five core genes, 22 accessory genes, and two possible output pathways.

View Article and Find Full Text PDF