The design of the new FeMo heterobimetallic species [FeMo(CO)5(κ(2)-dppe)(μ-pdt)] is reported. Mössbauer spectroscopy and density functional theory calculations give deep insight into the electronic and structural properties of this compound.
View Article and Find Full Text PDFThe purpose of the present study was to evaluate the use of a non-innocent ligand as a surrogate of the anchored [4Fe4S] cubane in a synthetic mimic of the [FeFe] hydrogenase active site. Reaction of 2,3-bis(diphenylphosphino) maleic anhydride (bma) with [Fe(2)(CO)(6)(mu-pdt)] (propanedithiolate, pdt=S(CH(2))(3)S) in the presence of Me(3)NO-2H(2)O afforded the monosubstituted derivative [Fe(2)(CO)(5)(Me(2)NCH(2)PPh(2))(mu-pdt)] (1). This results from the decomposition of the bma ligand and the apparent C-H bond cleavage in the released trimethylamine.
View Article and Find Full Text PDFTwo hexacarbonyl diiron compounds featuring dithiolate bridges with strong electron-withdrawing groups (CO(2)Me, tetrachloro-biphenyl) were synthesized and structurally characterized. Electrochemical study of these compounds demonstrates that such electron-withdrawing groups have a pronounced effect on both the reduction potentials and the electron transfer process. The reduced forms of these compounds catalyze the reduction of protons in dichloromethane.
View Article and Find Full Text PDFThe study by voltammetry of hydrophilic ion transfers across the interface between an aqueous solution and an immiscible organic solvent is limited by the presence of supporting electrolytes in both phases. Such a study is impossible for ions having a higher affinity for water than ions of the electrolytes. Indirectly, methods based on modified solid electrodes can be used; these are obtained by the deposition of an organic phase containing a molecule having redox properties, the modified electrode being in contact with an aqueous solution of the appropriate electrolyte.
View Article and Find Full Text PDF