Publications by authors named "Kevin Chabot"

Label-free biosensing, such as with surface plasmon resonance (SPR), is a highly efficient method for monitoring the responses of living cells exposed to pharmacological agents and biochemical stimuli in vitro. Conventional cell culture protocols used in cell-based biosensing generally provide little direct control over cell morphologies and phenotypes. Surface micropatterning techniques have been exploited for the controlled immobilization and establishment of well-defined cell morphologies and phenotypes.

View Article and Find Full Text PDF

Surface plasmon resonance imaging (SPRI) is a powerful label-free imaging modality for the analysis of morphological dynamics in cell monolayers. However, classical plasmonic imaging systems have relatively poor spatial resolution along one axis due to the plasmon mode attenuation distance (tens of μm, typically), which significantly limits their ability to resolve subcellular structures. We address this limitation by adding an array of nanostructures onto the metal sensing surface (25 nm thick, 200 nm width, 400 nm period grating) to couple localized plasmons with propagating plasmons, thereby reducing attenuation length and commensurately increasing spatial imaging resolution, without significant loss of sensitivity or image contrast.

View Article and Find Full Text PDF

Evanescent field based biosensing systems such as surface plasmon resonance (SPR), diffraction gratings, or metal-clad waveguides (MCWGs) are powerful tools for label-free real-time monitoring of signaling activity of living cells exposed to hormones, pharmacological agents, and toxins. In particular, MCWG-based imaging is well suited for studying relatively thick objects such as cells due to its greater depth of penetration into the sensing medium, compared to SPR. Label-free methods, however, provide only indirect measurements in that the measured signal arises from local changes in material properties rather than from specific biomolecular targets.

View Article and Find Full Text PDF