Publications by authors named "Kevin C Ess"

The advent of high-dimensional imaging offers new opportunities to molecularly characterize diagnostic cells in disorders that have previously relied on histopathological definitions. One example case is found in tuberous sclerosis complex (TSC), a developmental disorder characterized by systemic growth of benign tumors. Within resected brain tissues from patients with TSC, detection of abnormally enlarged balloon cells (BCs) is pathognomonic for this disorder.

View Article and Find Full Text PDF

Tuberous Sclerosis Complex (TSC) is a debilitating developmental disorder characterized by a variety of clinical manifestations. While benign tumors in the heart, lungs, kidney, and brain are all hallmarks of the disease, the most severe symptoms of TSC are often neurological, including seizures, autism, psychiatric disorders, and intellectual disabilities. TSC is caused by loss of function mutations in the or genes and consequent dysregulation of signaling via mechanistic Target of Rapamycin Complex 1 (mTORC1).

View Article and Find Full Text PDF

Background: Tuberous sclerosis complex (TSC) is a multi-system genetic disease that causes benign tumors in the brain and other vital organs. The most debilitating symptoms result from involvement of the central nervous system and lead to a multitude of severe symptoms including seizures, intellectual disability, autism, and behavioral problems. TSC is caused by heterozygous mutations of either the TSC1 or TSC2 gene and dysregulation of mTOR kinase with its multifaceted downstream signaling alterations is central to disease pathogenesis.

View Article and Find Full Text PDF

Tumor metastasis, the main cause of death in cancer patients, requires outgrowth of tumor cells after their dissemination and residence in microscopic niches. Nutrient sufficiency is a determinant of such outgrowth. Fatty acids (FA) can be metabolized by cancer cells for their energetic and anabolic needs but impair the cytotoxicity of T cells in the tumor microenvironment (TME), thereby supporting metastatic progression.

View Article and Find Full Text PDF

The implementation of three-dimensional tissue engineering concurrently with stem cell technology holds great promise for in vitro research in pharmacology and toxicology and modeling cardiac diseases, particularly for rare genetic and pediatric diseases for which animal models, immortal cell lines, and biopsy samples are unavailable. It also allows for a rapid assessment of phenotype-genotype relationships and tissue response to pharmacological manipulation. Mutations in the and genes lead to dysfunctional mTOR signaling and cause tuberous sclerosis complex (TSC), a genetic disorder that affects multiple organ systems, principally the brain, heart, skin, and kidneys.

View Article and Find Full Text PDF

Tuberous sclerosis complex (TSC) is a multi-system genetic disease that causes benign tumors in the brain and other vital organs. The most debilitating symptoms result from involvement of the central nervous system and lead to a multitude of severe symptoms including seizures, intellectual disability, autism, and behavioral problems. TSC is caused by heterozygous mutations of either the or gene.

View Article and Find Full Text PDF

Key Clinical Message: The presentation of posterior reversible encephalopathy syndrome (PRES) as the initial presenting sign of acute lymphoblastic leukemia is unusual, as PRES is more often a complication of therapy. This case highlights the importance of maintaining a broad differential diagnosis for pediatric hypertension and its complications.

Abstract: A 6-year-old male presented with a seizure-like episode.

View Article and Find Full Text PDF

Reactivation and dysregulation of the mTOR signaling pathway are a hallmark of aging and chronic lung disease; however, the impact on microvascular progenitor cells (MVPCs), capillary angiostasis, and tissue homeostasis is unknown. While the existence of an adult lung vascular progenitor has long been hypothesized, these studies show that Abcg2 enriches for a population of angiogenic tissue-resident MVPCs present in both adult mouse and human lungs using functional, lineage, and transcriptomic analyses. These studies link human and mouse MVPC-specific mTORC1 activation to decreased stemness, angiogenic potential, and disruption of p53 and Wnt pathways, with consequent loss of alveolar-capillary structure and function.

View Article and Find Full Text PDF

Tuberous Sclerosis Complex (TSC) is a debilitating developmental disorder characterized by a variety of clinical manifestations. TSC is caused by mutations in the TSC1 or TSC2 genes, which encode the hamartin/tuberin proteins respectively. These proteins function as a heterodimer that negatively regulates the mechanistic Target of Rapamycin Complex 1 (mTORC1).

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the process of centrosome reduction during cardiomyocyte maturation and its potential link to a rare infant case of dilated cardiomyopathy.
  • Researchers derived induced pluripotent stem cells from the patient, performed whole exome sequencing, and utilized CRISPR/Cas9 techniques to identify and validate the causal gene, RTTN (rotatin).
  • The findings suggest that a defect in the centrosomal protein RTTN is associated with impaired maturation and function of cardiomyocytes, marking it as a potential contributor to non-syndromic dilated cardiomyopathy.
View Article and Find Full Text PDF

A limiting factor in the regenerative capacity of the adult brain is the abundance and proliferative ability of neural stem cells (NSCs). Adult NSCs are derived from a subpopulation of embryonic NSCs that temporarily enter quiescence during mid-gestation and remain quiescent until postnatal reactivation. Here we present evidence that the mechanistic/mammalian target of rapamycin (mTOR) pathway regulates quiescence entry in embryonic NSCs of the developing forebrain.

View Article and Find Full Text PDF

We previously reported on two brothers who carry identical compound heterozygous PRKN mutations yet present with significantly different Parkinson's Disease (PD) clinical phenotypes. Juvenile cases demonstrate that PD is not necessarily an aging-associated disease. Indeed, evidence for a developmental component to PD pathogenesis is accumulating.

View Article and Find Full Text PDF

In December 2020, the Food and Drug Administration (FDA) issued Emergency Use Authorizations (EUAs) for Pfizer-BioNTech and Moderna COVID-19 vaccines, and in February 2021, FDA issued an EUA for the Janssen (Johnson & Johnson) COVID-19 vaccine. After each EUA, the Advisory Committee on Immunization Practices (ACIP) issued interim recommendations for vaccine use; currently Pfizer-BioNTech is authorized and recommended for persons aged ≥12 years and Moderna and Janssen for persons aged ≥18 years (1-3). Both Pfizer-BioNTech and Moderna vaccines, administered as 2-dose series, are mRNA-based COVID-19 vaccines, whereas the Janssen COVID-19 vaccine, administered as a single dose, is a recombinant replication-incompetent adenovirus-vector vaccine.

View Article and Find Full Text PDF

There is a need for valves and pumps that operate at the microscale with precision and accuracy, are versatile in their application, and are easily fabricated. To that end, we developed a new rotary planar multiport valve to faithfully select solutions (contamination = 5.22 ± 0.

View Article and Find Full Text PDF

Leukodystrophies are a group of neurodegenerative genetic disorders that affect approximately 1 in 7500 individuals. Despite therapeutic progress in individual leukodystrophies, guidelines in neurologic care are sparse and consensus among physicians and caregivers remains a challenge. At patient advocacy meetings hosted by Hunter's Hope from 2016-2018, multidisciplinary experts and caregivers met to conduct a literature review, identify knowledge gaps and summarize best practices regarding neurologic care.

View Article and Find Full Text PDF

Mutations in the DEPDC5 gene can cause epilepsy, including forms with and without brain malformations. The goal of this study was to investigate the contribution of DEPDC5 gene dosage to the underlying neuropathology of DEPDC5-related epilepsies. We generated induced pluripotent stem cells (iPSCs) from epilepsy patients harboring heterozygous loss of function mutations in DEPDC5.

View Article and Find Full Text PDF

Alternating hemiplegia of childhood (AHC) is a rare neurodevelopmental disease caused by heterozygous de novo missense mutations in the ATP1A3 gene that encodes the neuronal specific α3 subunit of the Na,K-ATPase (NKA) pump. Mechanisms underlying patient episodes including environmental triggers remain poorly understood, and there are no empirically proven treatments for AHC. In this study, we generated patient-specific induced pluripotent stem cells (iPSCs) and isogenic controls for the E815K ATP1A3 mutation that causes the most phenotypically severe form of AHC.

View Article and Find Full Text PDF

Over 1250 mutations in SCN1A, the Nav1.1 voltage-gated sodium channel gene, are associated with seizure disorders including GEFS+. To evaluate how a specific mutation, independent of genetic background, causes seizure activity we generated two pairs of isogenic human iPSC lines by CRISPR/Cas9 gene editing.

View Article and Find Full Text PDF

Tuberous sclerosis complex 2 (TSC2), or tuberin, is a pivotal regulator of the mechanistic target of rapamycin signaling pathway that controls cell survival, proliferation, growth, and migration. Loss of function manifests in organ-specific consequences, the mechanisms of which remain incompletely understood. Recent single cell analysis of the kidney has identified ATP-binding cassette G2 (Abcg2) expression in renal proximal tubules of adult mice as well as a in a novel cell population.

View Article and Find Full Text PDF

Human induced pluripotent stem cell (iPSC)-derived developmental lineages are key tools for in vitro mechanistic interrogations, drug discovery, and disease modeling. iPSCs have previously been differentiated to endothelial cells with blood-brain barrier (BBB) properties, as defined by high transendothelial electrical resistance (TEER), low passive permeability, and active transporter functions. Typical protocols use undefined components, which impart unacceptable variability on the differentiation process.

View Article and Find Full Text PDF

Astrocytes serve many functions in the human brain, many of which focus on maintenance of homeostasis. Astrocyte dysfunction in Tuberous Sclerosis Complex (TSC) has long been appreciated with activation of the mTORC1 signaling pathway resulting in gliosis and possibly contributing to the very frequent phenotype of epilepsy. We hypothesized that aberrant expression of the astrocyte protein aquaporin-4 (AQP4) may be present in TSC and contribute to disease pathology.

View Article and Find Full Text PDF

Neural stem/progenitor cells (NSPCs) of the ventricular-subventricular zone (V-SVZ) are candidate cells of origin for many brain tumors. However, whether NSPCs in different locations within the V-SVZ differ in susceptibility to tumorigenic mutations is unknown. Here, single-cell measurements of signal transduction intermediates in the mechanistic target of rapamycin complex 1 (mTORC1) pathway reveal that ventral NSPCs have higher levels of signaling than dorsal NSPCs These features are linked with differences in mTORC1-driven disease severity: introduction of a pathognomonic mutation only results in formation of tumor-like masses from the ventral V-SVZ.

View Article and Find Full Text PDF

Mutations in ATP1A3 encoding the catalytic subunit of the Na/K-ATPase expressed in mammalian neurons cause alternating hemiplegia of childhood (AHC) as well as an expanding spectrum of other neurodevelopmental syndromes and neurological phenotypes. Most AHC cases are explained by de novo heterozygous ATP1A3 mutations, but the fundamental molecular and cellular consequences of these mutations in human neurons are not known. In this study, we investigated the electrophysiological properties of neurons generated from AHC patient-specific induced pluripotent stem cells (iPSCs) to ascertain functional disturbances underlying this neurological disease.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session66f5omqkbph95sr671s3530ktmk50386): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once